

A draft document for discussion and brainstorming

Middle Layer (Matlab/Python) Discussion

Laurent S. Nadolski

Laurent S. Nadolski | Brainstorming about Middle Layer | AT WORKSHOP | 3rd October 2023| ESRF

1

- Introduction to MML (LEGACY) \rightarrow GETTING the spirit of a middle layer
 - The Matlab Middle Layer
 - Extensive Definition
 - Examples
 - Reasons for success and what has been learned ...
 - Choice of the tools
 - In house developments
 - TANGO cooperation and collaboration
- Open discussion about Middle Layer (ML)
 - Do we need a Python version? (pyML)
 - Do you need to refresh the Matlab version? (MML)

Using Matlab for Accelerator Experimentation and Control or A Matlab "MiddleLayer" (MML)

Adapted slides by Gregory J. Portmann

Jeff Corbett, Andrei Terebilo, James Safranek (SSRL) Christoph Steier, Tom Scarvie, Dave Robin (ALS) Laurent S. Nadolskin (SOCKETLS)^{rming about Middle Layer | AT WORKSHOP | 3rd October 2023| ESF}

MML community around the word:

a non-exhaustive list Many users, very few developers

North America: ALS, SSRL (SPEAR3), Duke FEL, NSLS2, (VUV or X-Ray rings), CLS, ...

Europe: SOLEIL, LAL/THOMX (France), DIAMOND (UK), ALBA (Spain), KIT/ANKA (Germany), ILSF (Iran), MAX IV (Sweden), SOLARIS (Poland), IJCLAB (France), BESSY and HZB (Germany), PETRA-IV (Germany)...

Asia: PLS2 (Korea), SLS (Thailand), SSRF (China), NSRRC/TPS (Taiwan), ...

Middle East: SESAME (Jordan)

Australia: ANSO

- Matrix programming language (variables default to a double precision matrix)
- Extensive built-in math libraries
- Active workspace for experimentation and algorithm development
- Easy of import/export of data
- Graphics library
- Compact code and good readability
- Adequate GUI capabilities
- Platform independents

Automating Physics Experiments (without becoming a software engineer)

Goals

• Develop an easy scripting method to experiment with accelerators (accelerator independent)

- Remove the control system details from the physicist (like Tango names and how to connect to the computer control system)
- Easy access to important data (offsets, gains, rolls, max/min, etc.)

• Integrate simulation and online control. Make working on an accelerator more like simulation codes.

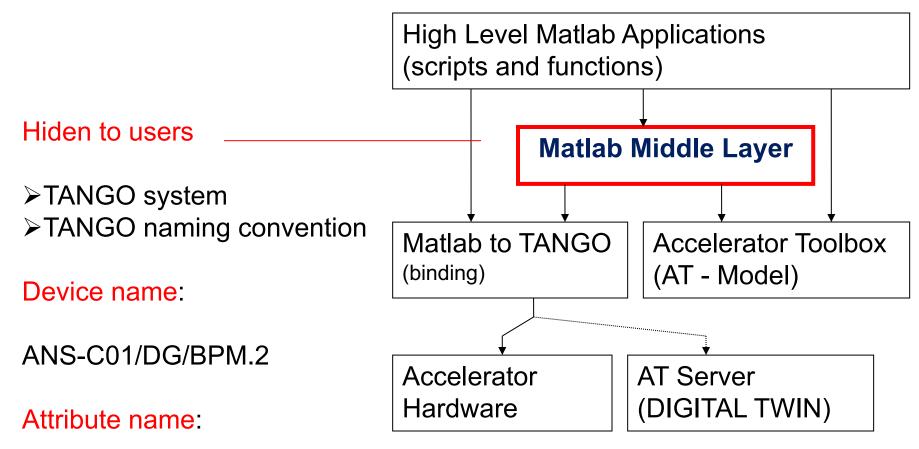
• Integrate data taking and data analysis tools

 Develop a software library of common tasks (orbit correction, tune correction, chromaticity, ID compensation, etc.)

 Develop high-level control applications to automate the setup and control of storage rings, boosters, and transfer lines.

Matlab Toolbox Suite for

Accelerator Physics


- MiddleLayer + High Level Applications
 1. Link between applications and control system or simulator.
 2. Functions to access accelerator data.

 - 3. Provide a physics function library.
- Control system flavor: ٠
 - MCA, LabCA, SCAIII Matlab to EPICS links
 - TANGO/Matlab binding
- Accelerator Toolbox for simulations
- LOCO Linear Optics from Closed Orbits (Calibration) •
- NAFF Library (frequency maps) •
- SC, etc. •
- Python...
- Used for transfer lines, Booster, Storage Ring

Software Interconnection Diagram

Replace TANGO by your control system

Laurent S. Nadolski | Brainstorming about Middle Layer | AT WORKSHOP | 3rd October 2023| ESRF

Function Library

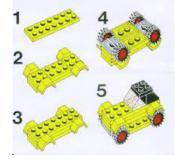
There are hundreds of functions for accelerator control

- setorbit general purpose global orbit correction function
- setorbitbump general purpose local bump function
- settune sets the storage ring tune
- setchro sets the storage ring chromaticity
- measchro measure the chromaticity
- measdisp measure the dispersion function
- quadcenter, quadplot finds the quadrupole center
- physics2hw converts between physics and hardware units
- measbpmresp measure a BPM response matrix
- measlifetime computes the beam lifetime
- minpv/maxpv min/max value for family/field
- srcycle standardizes the storage ring magnets
- scantune scan in tune space and record the lifetime
- scanaperture scans the electron beam in the straight sections and monitors lifetime
- finddispquad finds the setpoint that minimizes the dispersion in the straight sections.
- rmdisp adjusts the RF frequency to remove the dispersion component of the orbit by fitting the orbit to the dispersion orbit
- etc

Data Management

- Beam Position Monitors
 - Attribute names, gains, roll, crunch, offsets, golden, standard deviations
- Magnets
 - Attribute names, gains, offsets, roll, setpoint-monitor tolerance, amp-to-simulator conversions, hysteresis loops, max/min setpoint
- Other equipment: Vacuum, loss monitors, etc.
- Response matrices (Orbit, Tune, Chromaticity)
- Lattices (Save and restore)
- Measurement archiving
 - Dispersion, tunes, chromaticities, quadrupole centers, etc.
- TANGO configuration
 - Device & attribute properties
 - Historical data archiving

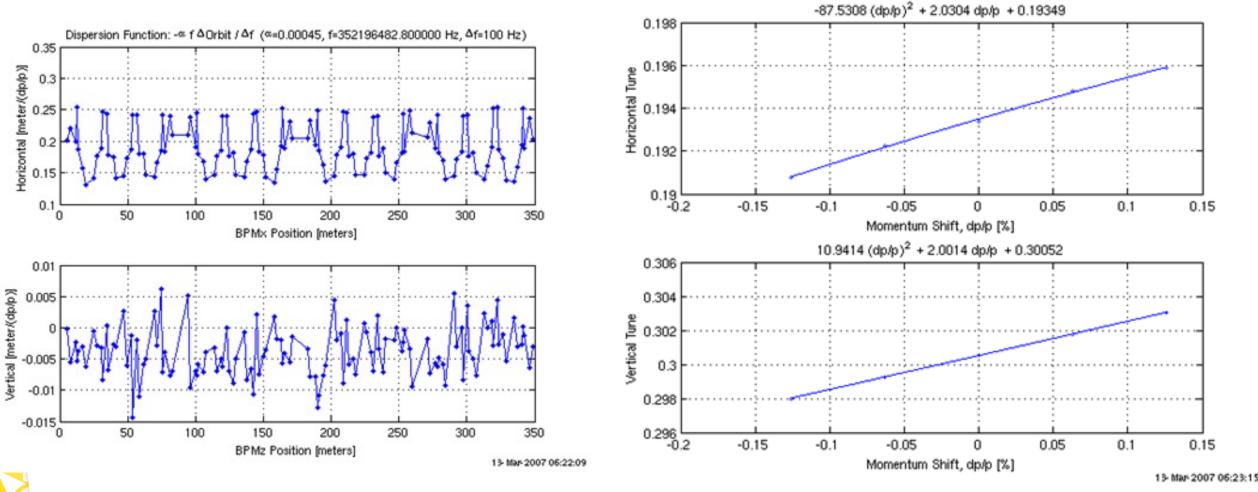
Matlab feedbacks at SOLEIL


- Relatively easy to use. Most people start writing useful scripts in a few hours.
- MiddleLayer + LOCO + AT + TANGO cover many of the high-level software concerns for storage rings. Hence, not every accelerator has to spend resources coding the same algorithms.
- Thousands of dedicated accelerator hours have been spent testing, improving, debugging, and exercising the middle-layer software.
- It's a good scripting language for machine shifts or it can be the high-level setup and control software for a storage ring.
- Integration of the AT model is good for debugging software without using accelerator time.
- Easy way for prototyping high-level control applications
- The semi-machine independence software has fostered collaboration and code sharing between the laboratories.

- Once configured, MML gives access for free to a full set of needed function bug-free and ready for use
- Saving time and energy
- Example of a higher level of abstraction wrt to AT function
 - To a full set higher-level script/applications than AT
 - [beta_x, beta_y] = modelbeta instead of
 - [output, ~, ~] = atlinopt(lattice, 0, 1:length(lattice))
 - beta_x = arrayfun(@(a).a.beta(1), output);
 - [beta_x, beta_y] = modelbeta('BPMx') apply a mask for BPM location only
- Building trust and ease of use.
- Do not reinvent the wheel focus on what matters the most
 - Everyone needs to measure the dispersion, the beta function, the close orbit, the chromaticity, etc.

Direct Benefits

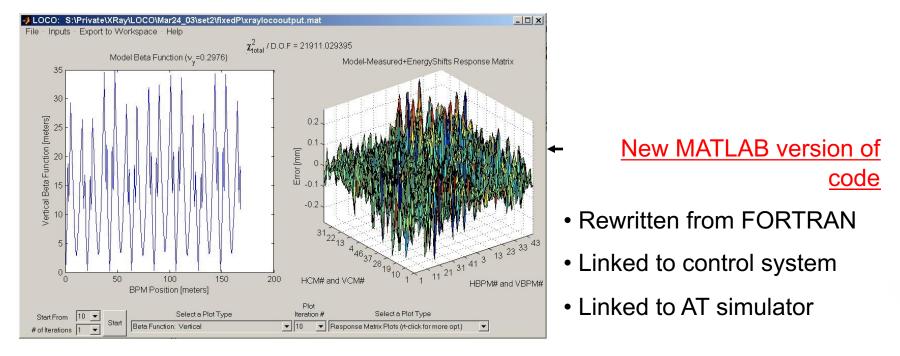
functions


Full application

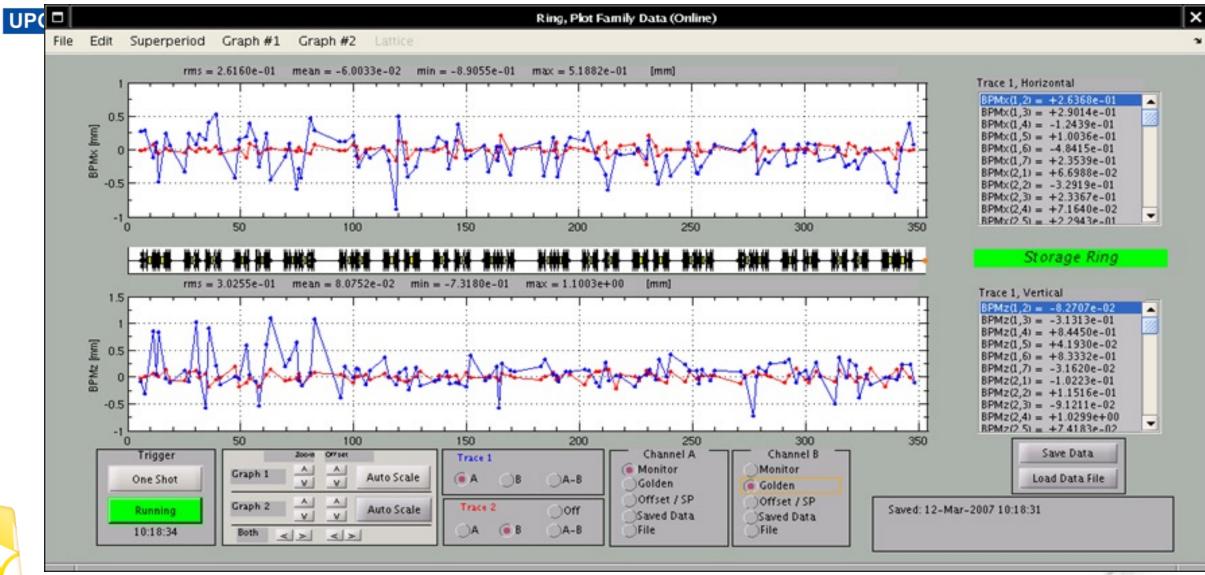
https://shorturl.at/lmn78

Bricks

Dispersion/Chromaticities

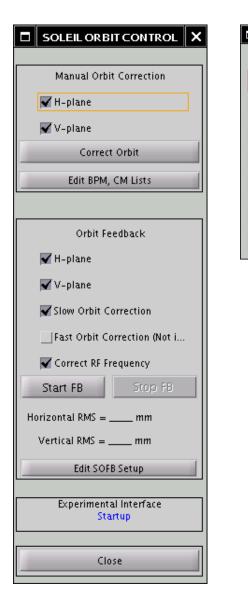

MML core functions

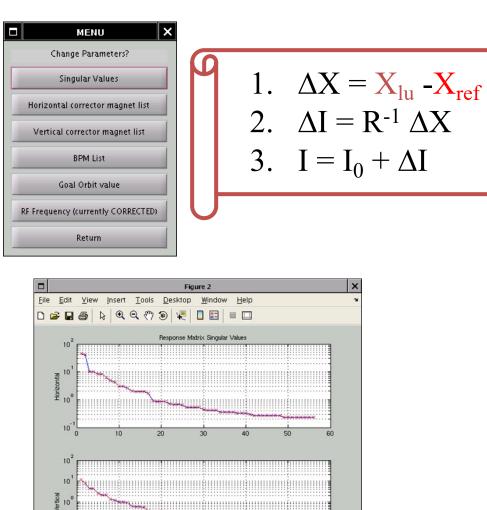
13


LOCO Optics Analysis

- Calibrate/control optics using orbit response matrix
- Determine quadrupole gradients
- Correct coupling
- Calibrate BPM gains, steering magnets
- Measure local chromaticity and transverse impedance

Displaying closed orbit




Upgraded from ALS

15

Orbit Correction, SOFB

uuuuuu in in aanaa aana in aana

20

30

Singular Value Number

10

×

50

60

40

Laurent S. Nadolski | Brainstorming about Middle Layer | AT WORKSHOP | 3rd October 2023] ESRH

Feedback from the community

Control System ٠

- What control system do you use in your control room (EPICS, TANGO, other)?

Matlab Middle Layer (MML) ٠

- What is the status in your lab?
- What are your use cases: simulation? operation? commissioning? beam-based measurements during machine days?
- What do you want to improve?

- What is your timetable and what are the available resources of your lab for working on the middle layer?

Python Middle Layer (PML) - How mature is PML? ٠

- Is there a strategy for moving between Matlab and Python?
- What barriers have been identified?
- What is the status of Python integration in your lab and control room?
- What are your use cases: simulation? operation? commissioning? beam-based measurements during machine days?

- What is your timeline and what are the available resources of your lab for working on the middle layer?

- Laboratory Feedback
 - ALBA, IJCLAB, BNL, ELETTRA, BESSY, HBZ, MAX IV, SOLEIL, PETRA IV, ESRF, ALS
- Many use cases still in Matlab (legacy)
 - Many lab cannot afford leaving Matlab on the short term
- Strong interest in Python-based Middle-layer
- Strong interest in Python-based Digital Twin
- Strong will to migrate to Python in the medium and long term
- Little or no resources
- No clear roadmap in many labs

Need a global effort a community Collaborative development

Many versions and local development (branches)

MML very successful but not released anymore

- I think that its a very good idea to foster this collaboration. Personally, I see it also a window of opportunity: in my opinion, these united forces could allow the reorganizing and modernizing what exists.
- I'd like to suggest
 - to consider to reorganize code bases to express the inherent structure a bit clearer to newcomers
 - review to which extent modern language constructs would simplify implementation or pave the path to further applications
 - review solutions existing elsewhere and adopt best practice.
- In case there is interest I am happy to elaborate on these points. Please find below some short keywords that would give an idea.

- Codebase reorganization (some suggestions below)
 - AT split up to
 - Common: c-integrators used by Matlab and python
 - AT? For Matlab part
 - pyAT for python parth
 - ML split up
 - Control system communication
 - Engineering to physics
 - Application layer (loco etc.)
- Projects to look as sources that could inspire what to use
 - ML
 - Functional mockup interface, open simulation platform. iso standard on digital twinning
 - Bluesky software stack

•Points that could help structure the discussion

- Requirements for modeling and measuring steady state versus transient processes
- Common ontology and data models, abstraction used
 - for expressing device data and device characteristics (expected timeouts, settle times, configuration)
 - for handling the parts that can run asynchronously and synchronously transparently
- Layers & Components:
 - analysis, measurement plans, device abstractions
 - patterns to applied
- Data exchange with databases or product lifecycle management systems next to their abstractions

- Written 30 years ago, this is true, but it is fully functional
- Improvement needed
 - Get benefits from the MATLAB evolution
 - Code improvement
 - Performance improvement
 - Obsolescence handling
 - Function, interface
 - New graphical interfaces
 - Get benefits from the atcollab version AT
- Refactoring may be needed
- Regression test, unitary test (Matlab can do it also very well)
- For all of that. A Project is needed with resources, developers, testers...

- Do we need a pyML (python middle layer to ease or life) and continue work in the spirit of MML?
- Extending the library of accelerator-oriented functions
- Tuning pyAT to your accelerator facility specificities in a more generic way

Appendices

6.1 Accelerator Object (AO)

But

FAMLIST

Lieu de stockage

Get/Set

AD.Machine

AD.ATModel

AD.BPMDelay

AD.TUNEDelay

AD.Directory.DataRoot

AD.OpsData.RespFiles

Tableau 6.1: Accelerator Object

Information permettant la communication entre les familles et le système de contrôle/commande

Espace de travail de Matlab getfamilydata / setfamilydata

6.2 Accelerator Data (AD)

	Lieu de
D	Get/Set

A(

μ

But de stockage

Espace de travail de Matlab getfamilydata / setfamilydata

nom de la machine, eg. 'ALS' ou 'SOLEIL'

Variables liées au MML

Racine de l'arborescence des fichiers de sauvegardes

Tableau de cellules des fichiers de matrices réponses, eg. {'respmatbpm_08-06-2002', 'respmattune'}

Nom de la maille AT

Temps d'attente entre deux relectures des BPM (attendre que les données soient renouvelées)

Temps de delai pour les nombres d'onde (cf. BPM)

données

AcceleratorObject.(FamilyName)

Champ	Description
FamilyName	 Nom de la famille ('BPMx', 'HCOR', etc.) (unicité requise)
FamilyType	 Nom de la catégorie d'éléments, par exemple 'QUAD'
MemberOf	- Tableau de cellules, par exemple {'QUAD', 'Magnet'}
Status	 1 pour statut valide, 0 pour invalide
DeviceList	- Vecteur colonne [1 1; 1 2; 2 1,]
ElementList	- Vecteur colonne [1;2;3;; n]
Desired	- Structure (cf. infra)
Monitor	- Structure (cf. infra)
Setpoint	- Structure (cf. infra)
DeviceNames	 Matrice de cellules pour le nom du device Tango
Champ	Description
Position	 Vecteur colonne avec la position longitudinal le long de l'anneau (mètres)
AT	- Structure pour le simulateur AT (facultatif)
Golden	 Structure avec les valeurs de référence (facultatif)

Tableau 4.1: Champs d'une famille du MML.

Equipment Family (>> showfamily)

Bending Magnet – BEND Quadrupoles – Q1, Q2, ... Q11 Sextupoles – S1, S2, ... S12 Quadrupoles tournés- QT Correctors – HCOR, VCOR Beam Position Monitors (BPM) – BPMx and BPMz Others - RF, DCCT, TUNE, GeV

Fields

Setpoint, Monitor, RampRate, TimeConstant, Sum, RunFlag, Trim, FF, DAC, On, Reset, Ready, Voltage, Power, Velocity, UserGap, HallProbe, Limit, etc...

Scripting example: Orbit Correction

% Gets the vertical orbit X = getam('BPMx');

% Gets the horizontal response matrix from the model Rx = getrespmat('BPMx', 'HCM'); % 120x56 matrix

% Computes the SVD of the response matrix Ivec = 1:48: [U, S, V] = svd(Rx, 0);

% Finds the corrector changes use 48 singular values DeltaAmps = -V(:,Ivec) * S(Ivec,Ivec)^-1 * U(:,Ivec)' * X;

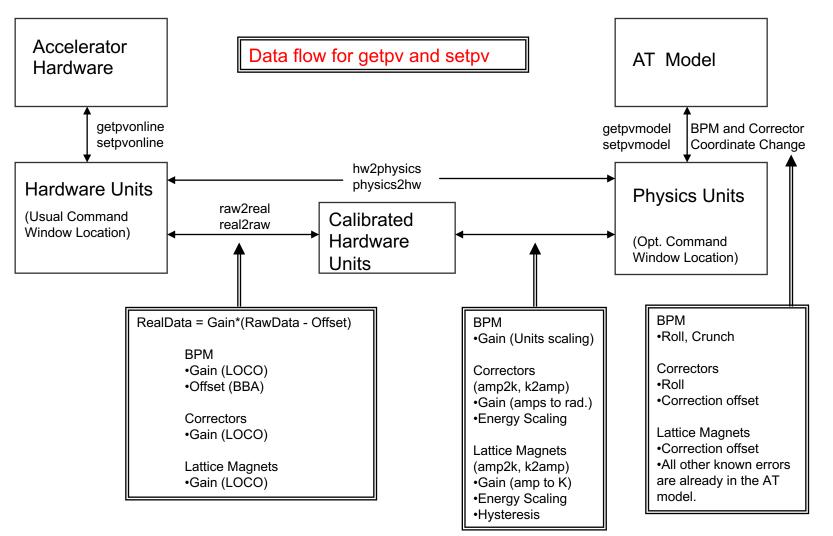
% Changes the corrector strengths stepsp('HCM', DeltaAmps);

(setorbitgui done this more elegantly)

28

Basic Calling Syntax

Naming Convention: practical, easy to remember, ... Family = Group descriptor (text string) Field = Subgroup descriptor (text string) DeviceList = [Sector Element-in-Sector]


Basic Functions getpv(Family, Field, DeviceList); setpv(Family, Field, Value, DeviceList); steppv(Family, Field, Value, DeviceList);

Examples: x = getpv('BPMx', 'Monitor', [3 4;5 2]); h = getpv('HCM', 'Setpoint', [2 1;12 4]); setpv('QF', 'Setpoint', 81);

MiddleLayer Data Flow Diagram

• Nomenclatures

- TANGO cf document, ex: ANS-C01/DG/BPM.2
- Matlab Middle Layer
 - BPM [1 2] : BPM 2 of cell 1
- getam('BPMx', [1 2])
- family2tangodev('BPMx',[1 2])
- RF-Fréquency
 - getrf : 352.1962246 MHz
 - 10 Hz, steprf(10e-6)
 - getrf : 352.1962346 MHz

Controls: Real or Simulated Equipment?

- Make Model as default
 >> switch2sim
- Make Real Equipment as default
 >> switch2online
- Overloading commands: 'Model' : getsp('HCOR', 'Model'); 'Online'

- Make Hardware Units per Defaults
 - >> switch2hw
- Make Physics Units per Default
 >> switch2physics
- Overloading Commands

'Hardware' - Force hardware units for this function. 'Physics' - Force physics units for this function.

Examples :

>> Amp = getpv('Q1', 'Hardware');
>> K = getpv('Q1', 'Physics');

