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Refactoring: Overview
Towards thor-scsi-lib

▶ TRACY II code basis: split up
▶ lattice parser ← FLAME [2]
▶ TPSA → gtpsa [3] ← gtpsa-cpp
▶ modernised language “std::” containers, “arma::mat” for matrices (interface)
▶ autotools → cmake
▶ split up: multipole evaluation → field kick

▶ delegates:
▶ field interpolation
▶ radiation calculation (only if there)

▶ lets observe: phase space

thus fine grained control if required or not
▶ python interface ← pybind11 [4] → elements in pyton
▶ many parameters: double or truncated power series objects
▶ worked on user interface simplification

https://github.com/hz-b/thor-scsi-lib/
https://github.com/hz-b/gtpsa-cpp/
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Machine elements in python
Example: non linear kicker

class AirCoilMagneticField(tslib.Field2DInterpolation):

"""Field of an air coil"""

def __init__(self, *, positions, currents):

tslib.Field2DInterpolation.__init__(self)

def field_py(self, pos, field):

x, y = pos

dz = x + y * 1j - self.positions # offset from wire

r = np.absolute(dz), phi = np.angle(dz)

B = (self.precomp * 1 / r * np.exp((phi + np.pi / 2) * 1j)).sum()

field[0], field[1] = B.imag, B.real

class NonlinearKickerField(AirCoilMagneticField):

"""Field created by a classical telephone transmission cable"""

def __init__(self, *, pos, current):

p = np.array([pos, pos.conjugate(), -pos.conjugate(), -pos])

currents = np.array([current] * len(pos)) * [1, -1, -1, 1]

AirCoilMagneticField.__init__(self, positions=pos, currents=currents)

struct aircoil_filament {

double x, y, current;

};

template<class C>

AirCoilMagneticFieldKnobbed(

const std::vector<aircoil_filament_t> filaments,

const double scale=1e0);

template<typename T>

inline void _field(const T& x, const T& y, T *Bx, T *By) const {

const double precomp = mu0 / (2 * M_PI) * this->m_scale;

*Bx = *By = 0e0;

for(const auto& f: this->m_filaments){

const T dx=x-f.x, dy=y-f.y, r2=dx*dx + dy*dy; // offset from wire

*By += precomp * f.current / r2 * dx;

*Bx += precomp * f.current / r2 * dy;

}

}

[5]

I

B

Source: Wikipedia
by Jfmelero
Element in Python
Called from C++ code

as prototype
then reimplemented in C++

https://commons.wikimedia.org/w/index.php?curid=3634402
https://commons.wikimedia.org/w/index.php?curid=3634402
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Data models
Simplify processing

Definition
▶ intuitive schema of

used data
▶ uses:

▶ sub data models
▶ primitive types

Example: BBA

measurements for
magnet → measurement
point → bpm’s → bpm
planes
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Recommandations I

Start: definitions
▶ target

▶ basis

▶ Cross check with original author

Very useful: documentation of physics model [1]

Start: preparations

▶ code parts: standard libraries → replacement

▶ version control system

▶ automatic documentation tool (sphinx, doxygen,)
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Recommandations II

Refactoring preparation

▶ work plan → “identify rip apart and reassemble”

▶ build and test system (run frequently)
▶ Build up of test system

▶ total function test
▶ “safety warnings”

Refactoring: Step I

▶ upgrade code base → modern standard

▶ as long as checkable with test base

End: Hold point: upgraded code base
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Recommandations III

Refactoring: Step II

▶ Start with largest intervention

▶ Run full function test (e.g. with compatibility layer)

Refactoring: cont.

similar to above

Don’t forget

▶ distribute early

▶ distribute often

Detailed in [6]
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Outside view: where we are

▶ Start: tracy, thor scsi, single particle dynamics

▶ Target: implementation of a digital twin
▶ On boarding: software engineer → review of architecture

▶ Data models
▶ Interacting components: but as independent as possible
▶ µ-service architecture
▶ review of existing solutions
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On calculating single particle dynamics
Outsiders view

▶ Apply kicks to particles described canonical variables

▶ at the right place

▶ in the correct coordinate system

▶ inspect result: at end or in between

▶ draw conclusions
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Single particle dynamics: an architecture
Proposal: overview

Processor

Preprocessor Postprocessor

Analysis  / Optimisation Layer

Facade

Lattice ID
Element ID's Property ID's, values
phase space

Lattice Id
phase space
observers

preprocessor:
flattens assemblies to sequence
combine global to local

Command recorder Lattice 
recorder

Lattice 
Datalake

post processor
combines, extracts (e.g. I1..I5)

Details explained below, influenced by python architecture patterns [7]
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Basic building blocks
bricks, mortar, sand

Canonical variables
▶ phase space variables x , px , y , py , delta,

ct. . .
▶ operations on these: arithmetic,

trigonometric, exponent

Knobs
▶ properties of elements

e.g. K , K2,
▶ properties of coordinate transformation

e.g. ∆x , ∆y

▶ operations on these: arithmetic,
trigonometric, exponent

Variables depend on knobs, knobs depend on
variables [3]

Identities

used for

▶ element locations: e.g. q1m1d1r
▶ element identities: e.g. q1m1:#4
▶ property identities: e.g. K

sole demand

▶ unique within its context
▶ for debugging: values meaningful for

humans

Implementation

Knobs, variables

▶ double, complex
▶ interval, numerical stabilised
▶ truncated power series
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Core of calculation
The processor

Ensemble

Transform

Element

Transform

Placing component

propagator (processor)

drift

cavity

field kick

Map[Sequence[element], phase space]
Sequence(element )

phase space phase space

observers

.

.

.

▶ propagate phase space through elements “linac like”

▶ accelerator: global coordinate system (Frenet
Serret, canonical variables)

▶ elements: local coordinate system ← from
machine, to assembly, to element

▶ separable: element properties and propagator (back to
Tracy II or (py)AT)

▶ “linac” accelerator: sequence of (placed) element
descriptions:

▶ dedicated propagators: selected by: element,
phase space, (calc config)

▶ observers: for inspection, storage (“phase space
monitor”, “watch point” )
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▶ propagate phase space through elements “linac like”

▶ accelerator: global coordinate system (Frenet
Serret, canonical variables)

▶ elements: local coordinate system ← from
machine, to assembly, to element

▶ separable: element properties and propagator (back to
Tracy II or (py)AT)

▶ “linac” accelerator: sequence of (placed) element
descriptions:

▶ dedicated propagators: selected by: element,
phase space, (calc config)

▶ observers: for inspection, storage (“phase space
monitor”, “watch point” )
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Phase space, Element
On variables and knobs

▶ phase space: variables (x , px . . . )

▶ element: knobs (e.g. K )

variables depend on knobs, but knobs not on variables

▶ variables knobs implementation: floating point, truncated power series,
stabilised floating point calculation, interval calculation

▶ depending on use case
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Calculation Engine: implementation

▶ Define abstract base classes
▶ transform / element
▶ phase space
▶ “kick” propagator

▶ implement propagators: split up
▶ multipole: field kick, interpolation,

integrator,
▶ radiation: as delegate
▶ NB: integration integrals, diffusion

matrix → post processing

▶ implement dispatcher: (element,
phase space) → propagator
Dynamically typed languages: run
time
Static typed language: templates,
polymorphism

propagator (processor)

drift

cavity

field kick

Map[Sequence[element], phase space]
Sequence(element )

phase space phase space

observers

.

.

.



Tracy and
Thor to

thor-scsi-lib:
Lessons
learned

P. Schnizer
et al.

Acknowledgement

Thor scsi

Towards an
architecture

Far view

Architecture:
building block

Implementation

Thor scsi and
(py)AT

Calculation engine ↔ scientific work bench
A slim interface

▶ Motivation: studies modify some selected parameter of lattice
independent of propagation engine: modify parameters, inspect

▶ Abstraction
▶ on specific lattice (lattice id)
▶ subset of its elements: change set value (property id)
▶ propagate phase space and inspect

(lattice id, element id, property id, value)

▶ nlattice = lattice.update(element id, property id, value)
implementation: copy only as required (father figure: pandas [8], xarray [9])
handled in Facade
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Analysis and optimisation

ORM: dangerous
def measure_orbit_response(steerers, dI):

for steerer in steerers:

lattice[steerer].K += dI

calculate_closed_orbit()

lattice[steerer].K -= dI

ORM: handle exceptions
def measure_orbit_response(steerers, dI):

for steerer in steerers:

try:

lattice[steerer].K += dI

calculate_closed_orbit()

finally:

lattice[steerer].K -= dI

Facade: update
def measure_orbit_response(

lattice, steerers, dI):

for steerer in steerers:

t_lat = lattice.update(

steerer, "K", dI)

calculate_closed_orbit(t_lat)

▶ supports: message bus, command
recording, results ↔ machine setting

▶ multiprocessing:
Sequence[commands] →
partitioning[10] → jobs distribution

▶ Preconditions:
▶ calculation / propagation engine
▶ stored lattices, elements

▶ interaction with propagation engine:
separation: more updates than
required new handle: e.g. orbit
response matrix: change steerer
setting: calculate closed orbit. next
steerer: just start with handle again
advantage: propagation of
exceptions: no undefined state
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Design & Analysis: handling (magnet) families

▶ families: subset of magnets

▶ layer: analysis and optimisation
▶ implementation: separate

▶ selecting subset → generator
▶ apply change → lambda function
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Single particle dynamics: an architecture
Proposal: overview

Processor

Preprocessor Postprocessor

Analysis  / Optimisation Layer

Facade

Lattice ID
Element ID's Property ID's, values
phase space

Lattice Id
phase space
observers

preprocessor:
flattens assemblies to sequence
combine global to local

Command recorder Lattice 
recorder

Lattice 
Datalake

post processor
combines, extracts (e.g. I1..I5)

Details explained below, influenced by python architecture patterns [7]
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Thor scsi and (py)AT
status →Modernised architecture

Status
▶ Element description: (abstract base

type?)
▶ processor: maps strings → propagator
▶ analysis scripts: tied to processor

implementation

Modernised architecture
▶ processor: propagator implementation
← from abstract base type

▶ AT legacy processors: provide proxies
to make them callable

Refactoring recommendations

▶ Split up of code base:
▶ C code integrator: used by AT and pyAT e.g. “at integrators”
▶ AT matlab code base: e.g. “AT”
▶ python code base: e.g. “py(AT)”

development: git submodules?

Software architects and engineers: supervise and steer process
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What’s missing
From steady state to transient

Or the concept of time (compare Functional mockup interface standard) or open
simulation platform [11, 12].

Steady state

▶ make change

▶ wait

▶ inspect result

Transient
▶ split up of calculation

▶ different speed

▶ exchange of progress
▶ ti ← change of “machine characteristic”: e.g. kicker fired:

▶ advance all integration until ti
▶ “restart” integration at ti

fhi-standard.org
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Processor implementation
Language of choice

Boundary conditions

▶ CPU intensive task

▶ core of calculation → defines execution time

Compiled language: C++

▶ implement as templates:
▶ template<typename knob> struct element;

▶ template<typename var> struct phase_space;

▶ processor: dispatch to sub-processor: std variant, polymorphism

Dynamically typed language: JIT

▶ python: fast JIT?

▶ LuaJIT: demonstration by mad-ng
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py(AT) recommendation: passenger view

▶ Currently: spin up of code base
▶ Consider:

▶ define architecture
▶ data models
▶ interfaces: abstract base classes
▶ layers
▶ components

▶ split up
▶ shared code base
▶ legacy code
▶ language used

▶ adhere: self set standards
▶ gain:

▶ components: simply development separation
▶ layers: separate tasks, separate development
▶ XXX

Target: simplify your life down the road
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Conclusion

▶ Thor scsi: refactored code base, python interface, UI experience

▶ pyAT: active vibrant community, review of legacy code
▶ Proposal:

▶ architecture review, split up of repository → more managble code functionality
increasing

▶ layers / components:
▶ upcoming needs → changes → simpler implementation
▶ work on subparts
▶ roll your on: build on higher level products

▶ thor-scsi-lib next step: refactoring to processor
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