
Tracy and
Thor to

thor-scsi-lib:
Lessons
learned

P. Schnizer
et al.

Acknowledgement

Thor scsi

Towards an
architecture

Thor scsi and
(py)AT

Tracy and Thor to thor-scsi-lib: Lessons learned

Pierre Schnizer, Waheedullah Sulaiman Khail, Teresia Olsson

Helmholtz-Zentrum Berlin (HZB), Germany

2. Oktober 2023

Tracy and
Thor to

thor-scsi-lib:
Lessons
learned

P. Schnizer
et al.

Acknowledgement

Thor scsi

Towards an
architecture

Thor scsi and
(py)AT

Overview

Thor scsi
Refactoring
Data models
Lessons learned: thor-scsi refactoring

Towards an architecture
Far view
Architecture: building block
Implementation

Thor scsi and (py)AT

Tracy and
Thor to

thor-scsi-lib:
Lessons
learned

P. Schnizer
et al.

Acknowledgement

Thor scsi

Towards an
architecture

Thor scsi and
(py)AT

Acknowledgement

Johan Bengtsson for preparing his code base, the updated documentation of the
physics and maths involved [1], many tests and reviews of the
developed code, reimplementing linear optics optimisation code in
python, teaching proper dynamics. . . , kayaking

Markus Ries practical machine steering knowledge . . . good nerves

Guabao Shen for NSLS II virtual accelerator code share

Thomas Birke introduction to EPICS control system

BESSY II and MLS all people that make it all actual work

all that I am not even aware that they make my work possible

Tracy and
Thor to

thor-scsi-lib:
Lessons
learned

P. Schnizer
et al.

Acknowledgement

Thor scsi

Refactoring

Data models

Lessons learned:
thor-scsi refactoring

Towards an
architecture

Thor scsi and
(py)AT

Refactoring: Overview
Towards thor-scsi-lib

▶ TRACY II code basis: split up
▶ lattice parser ← FLAME [2]
▶ TPSA → gtpsa [3] ← gtpsa-cpp
▶ modernised language “std::” containers, “arma::mat” for matrices (interface)
▶ autotools → cmake
▶ split up: multipole evaluation → field kick

▶ delegates:
▶ field interpolation
▶ radiation calculation (only if there)

▶ lets observe: phase space

thus fine grained control if required or not
▶ python interface ← pybind11 [4] → elements in pyton
▶ many parameters: double or truncated power series objects
▶ worked on user interface simplification

https://github.com/hz-b/thor-scsi-lib/
https://github.com/hz-b/gtpsa-cpp/

Tracy and
Thor to

thor-scsi-lib:
Lessons
learned

P. Schnizer
et al.

Acknowledgement

Thor scsi

Refactoring

Data models

Lessons learned:
thor-scsi refactoring

Towards an
architecture

Thor scsi and
(py)AT

Machine elements in python
Example: non linear kicker

class AirCoilMagneticField(tslib.Field2DInterpolation):

"""Field of an air coil"""

def __init__(self, *, positions, currents):

tslib.Field2DInterpolation.__init__(self)

def field_py(self, pos, field):

x, y = pos

dz = x + y * 1j - self.positions # offset from wire

r = np.absolute(dz), phi = np.angle(dz)

B = (self.precomp * 1 / r * np.exp((phi + np.pi / 2) * 1j)).sum()

field[0], field[1] = B.imag, B.real

class NonlinearKickerField(AirCoilMagneticField):

"""Field created by a classical telephone transmission cable"""

def __init__(self, *, pos, current):

p = np.array([pos, pos.conjugate(), -pos.conjugate(), -pos])

currents = np.array([current] * len(pos)) * [1, -1, -1, 1]

AirCoilMagneticField.__init__(self, positions=pos, currents=currents)

struct aircoil_filament {

double x, y, current;

};

template<class C>

AirCoilMagneticFieldKnobbed(

const std::vector<aircoil_filament_t> filaments,

const double scale=1e0);

template<typename T>

inline void _field(const T& x, const T& y, T *Bx, T *By) const {

const double precomp = mu0 / (2 * M_PI) * this->m_scale;

*Bx = *By = 0e0;

for(const auto& f: this->m_filaments){

const T dx=x-f.x, dy=y-f.y, r2=dx*dx + dy*dy; // offset from wire

*By += precomp * f.current / r2 * dx;

*Bx += precomp * f.current / r2 * dy;

}

}

[5]

I

B

Source: Wikipedia
by Jfmelero
Element in Python
Called from C++ code

as prototype
then reimplemented in C++

https://commons.wikimedia.org/w/index.php?curid=3634402
https://commons.wikimedia.org/w/index.php?curid=3634402

Tracy and
Thor to

thor-scsi-lib:
Lessons
learned

P. Schnizer
et al.

Acknowledgement

Thor scsi

Refactoring

Data models

Lessons learned:
thor-scsi refactoring

Towards an
architecture

Thor scsi and
(py)AT

Machine elements in python
Example: non linear kicker

class AirCoilMagneticField(tslib.Field2DInterpolation):

"""Field of an air coil"""

def __init__(self, *, positions, currents):

tslib.Field2DInterpolation.__init__(self)

def field_py(self, pos, field):

x, y = pos

dz = x + y * 1j - self.positions # offset from wire

r = np.absolute(dz), phi = np.angle(dz)

B = (self.precomp * 1 / r * np.exp((phi + np.pi / 2) * 1j)).sum()

field[0], field[1] = B.imag, B.real

class NonlinearKickerField(AirCoilMagneticField):

"""Field created by a classical telephone transmission cable"""

def __init__(self, *, pos, current):

p = np.array([pos, pos.conjugate(), -pos.conjugate(), -pos])

currents = np.array([current] * len(pos)) * [1, -1, -1, 1]

AirCoilMagneticField.__init__(self, positions=pos, currents=currents)

struct aircoil_filament {

double x, y, current;

};

template<class C>

AirCoilMagneticFieldKnobbed(

const std::vector<aircoil_filament_t> filaments,

const double scale=1e0);

template<typename T>

inline void _field(const T& x, const T& y, T *Bx, T *By) const {

const double precomp = mu0 / (2 * M_PI) * this->m_scale;

*Bx = *By = 0e0;

for(const auto& f: this->m_filaments){

const T dx=x-f.x, dy=y-f.y, r2=dx*dx + dy*dy; // offset from wire

*By += precomp * f.current / r2 * dx;

*Bx += precomp * f.current / r2 * dy;

}

}

[5]

I

B

Source: Wikipedia
by Jfmelero
Element in Python
Called from C++ code

as prototype
then reimplemented in C++

https://commons.wikimedia.org/w/index.php?curid=3634402
https://commons.wikimedia.org/w/index.php?curid=3634402

Tracy and
Thor to

thor-scsi-lib:
Lessons
learned

P. Schnizer
et al.

Acknowledgement

Thor scsi

Refactoring

Data models

Lessons learned:
thor-scsi refactoring

Towards an
architecture

Thor scsi and
(py)AT

Data models
Simplify processing

Definition
▶ intuitive schema of

used data
▶ uses:

▶ sub data models
▶ primitive types

Example: BBA

measurements for
magnet → measurement
point → bpm’s → bpm
planes

Tracy and
Thor to

thor-scsi-lib:
Lessons
learned

P. Schnizer
et al.

Acknowledgement

Thor scsi

Refactoring

Data models

Lessons learned:
thor-scsi refactoring

Towards an
architecture

Thor scsi and
(py)AT

Recommandations I

Start: definitions
▶ target

▶ basis

▶ Cross check with original author

Very useful: documentation of physics model [1]

Start: preparations

▶ code parts: standard libraries → replacement

▶ version control system

▶ automatic documentation tool (sphinx, doxygen,)

Tracy and
Thor to

thor-scsi-lib:
Lessons
learned

P. Schnizer
et al.

Acknowledgement

Thor scsi

Refactoring

Data models

Lessons learned:
thor-scsi refactoring

Towards an
architecture

Thor scsi and
(py)AT

Recommandations II

Refactoring preparation

▶ work plan → “identify rip apart and reassemble”

▶ build and test system (run frequently)
▶ Build up of test system

▶ total function test
▶ “safety warnings”

Refactoring: Step I

▶ upgrade code base → modern standard

▶ as long as checkable with test base

End: Hold point: upgraded code base

Tracy and
Thor to

thor-scsi-lib:
Lessons
learned

P. Schnizer
et al.

Acknowledgement

Thor scsi

Refactoring

Data models

Lessons learned:
thor-scsi refactoring

Towards an
architecture

Thor scsi and
(py)AT

Recommandations III

Refactoring: Step II

▶ Start with largest intervention

▶ Run full function test (e.g. with compatibility layer)

Refactoring: cont.

similar to above

Don’t forget

▶ distribute early

▶ distribute often

Detailed in [6]

Tracy and
Thor to

thor-scsi-lib:
Lessons
learned

P. Schnizer
et al.

Acknowledgement

Thor scsi

Towards an
architecture

Far view

Architecture:
building block

Implementation

Thor scsi and
(py)AT

Outside view: where we are

▶ Start: tracy, thor scsi, single particle dynamics

▶ Target: implementation of a digital twin
▶ On boarding: software engineer → review of architecture

▶ Data models
▶ Interacting components: but as independent as possible
▶ µ-service architecture
▶ review of existing solutions

Tracy and
Thor to

thor-scsi-lib:
Lessons
learned

P. Schnizer
et al.

Acknowledgement

Thor scsi

Towards an
architecture

Far view

Architecture:
building block

Implementation

Thor scsi and
(py)AT

On calculating single particle dynamics
Outsiders view

▶ Apply kicks to particles described canonical variables

▶ at the right place

▶ in the correct coordinate system

▶ inspect result: at end or in between

▶ draw conclusions

Tracy and
Thor to

thor-scsi-lib:
Lessons
learned

P. Schnizer
et al.

Acknowledgement

Thor scsi

Towards an
architecture

Far view

Architecture:
building block

Implementation

Thor scsi and
(py)AT

Single particle dynamics: an architecture
Proposal: overview

Processor

Preprocessor Postprocessor

Analysis / Optimisation Layer

Facade

Lattice ID
Element ID's Property ID's, values
phase space

Lattice Id
phase space
observers

preprocessor:
flattens assemblies to sequence
combine global to local

Command recorder Lattice
recorder

Lattice
Datalake

post processor
combines, extracts (e.g. I1..I5)

Details explained below, influenced by python architecture patterns [7]

Tracy and
Thor to

thor-scsi-lib:
Lessons
learned

P. Schnizer
et al.

Acknowledgement

Thor scsi

Towards an
architecture

Far view

Architecture:
building block

Implementation

Thor scsi and
(py)AT

Basic building blocks
bricks, mortar, sand

Canonical variables
▶ phase space variables x , px , y , py , delta,

ct. . .
▶ operations on these: arithmetic,

trigonometric, exponent

Knobs
▶ properties of elements

e.g. K , K2,
▶ properties of coordinate transformation

e.g. ∆x , ∆y

▶ operations on these: arithmetic,
trigonometric, exponent

Variables depend on knobs, knobs depend on
variables [3]

Identities

used for

▶ element locations: e.g. q1m1d1r
▶ element identities: e.g. q1m1:#4
▶ property identities: e.g. K

sole demand

▶ unique within its context
▶ for debugging: values meaningful for

humans

Implementation

Knobs, variables

▶ double, complex
▶ interval, numerical stabilised
▶ truncated power series

Tracy and
Thor to

thor-scsi-lib:
Lessons
learned

P. Schnizer
et al.

Acknowledgement

Thor scsi

Towards an
architecture

Far view

Architecture:
building block

Implementation

Thor scsi and
(py)AT

Core of calculation
The processor

Ensemble

Transform

Element

Transform

Placing component

propagator (processor)

drift

cavity

field kick

Map[Sequence[element], phase space]
Sequence(element)

phase space phase space

observers

.

.

.

▶ propagate phase space through elements “linac like”

▶ accelerator: global coordinate system (Frenet
Serret, canonical variables)

▶ elements: local coordinate system ← from
machine, to assembly, to element

▶ separable: element properties and propagator (back to
Tracy II or (py)AT)

▶ “linac” accelerator: sequence of (placed) element
descriptions:

▶ dedicated propagators: selected by: element,
phase space, (calc config)

▶ observers: for inspection, storage (“phase space
monitor”, “watch point”)

Tracy and
Thor to

thor-scsi-lib:
Lessons
learned

P. Schnizer
et al.

Acknowledgement

Thor scsi

Towards an
architecture

Far view

Architecture:
building block

Implementation

Thor scsi and
(py)AT

Core of calculation
The processor

Ensemble

Transform

Element

Transform

Placing component

propagator (processor)

drift

cavity

field kick

Map[Sequence[element], phase space]
Sequence(element)

phase space phase space

observers

.

.

.

▶ propagate phase space through elements “linac like”

▶ accelerator: global coordinate system (Frenet
Serret, canonical variables)

▶ elements: local coordinate system ← from
machine, to assembly, to element

▶ separable: element properties and propagator (back to
Tracy II or (py)AT)

▶ “linac” accelerator: sequence of (placed) element
descriptions:

▶ dedicated propagators: selected by: element,
phase space, (calc config)

▶ observers: for inspection, storage (“phase space
monitor”, “watch point”)

Tracy and
Thor to

thor-scsi-lib:
Lessons
learned

P. Schnizer
et al.

Acknowledgement

Thor scsi

Towards an
architecture

Far view

Architecture:
building block

Implementation

Thor scsi and
(py)AT

Phase space, Element
On variables and knobs

▶ phase space: variables (x , px . . .)

▶ element: knobs (e.g. K)

variables depend on knobs, but knobs not on variables

▶ variables knobs implementation: floating point, truncated power series,
stabilised floating point calculation, interval calculation

▶ depending on use case

Tracy and
Thor to

thor-scsi-lib:
Lessons
learned

P. Schnizer
et al.

Acknowledgement

Thor scsi

Towards an
architecture

Far view

Architecture:
building block

Implementation

Thor scsi and
(py)AT

Calculation Engine: implementation

▶ Define abstract base classes
▶ transform / element
▶ phase space
▶ “kick” propagator

▶ implement propagators: split up
▶ multipole: field kick, interpolation,

integrator,
▶ radiation: as delegate
▶ NB: integration integrals, diffusion

matrix → post processing

▶ implement dispatcher: (element,
phase space) → propagator
Dynamically typed languages: run
time
Static typed language: templates,
polymorphism

propagator (processor)

drift

cavity

field kick

Map[Sequence[element], phase space]
Sequence(element)

phase space phase space

observers

.

.

.

Tracy and
Thor to

thor-scsi-lib:
Lessons
learned

P. Schnizer
et al.

Acknowledgement

Thor scsi

Towards an
architecture

Far view

Architecture:
building block

Implementation

Thor scsi and
(py)AT

Calculation engine ↔ scientific work bench
A slim interface

▶ Motivation: studies modify some selected parameter of lattice
independent of propagation engine: modify parameters, inspect

▶ Abstraction
▶ on specific lattice (lattice id)
▶ subset of its elements: change set value (property id)
▶ propagate phase space and inspect

(lattice id, element id, property id, value)

▶ nlattice = lattice.update(element id, property id, value)
implementation: copy only as required (father figure: pandas [8], xarray [9])
handled in Facade

Tracy and
Thor to

thor-scsi-lib:
Lessons
learned

P. Schnizer
et al.

Acknowledgement

Thor scsi

Towards an
architecture

Far view

Architecture:
building block

Implementation

Thor scsi and
(py)AT

Analysis and optimisation

ORM: dangerous
def measure_orbit_response(steerers, dI):

for steerer in steerers:

lattice[steerer].K += dI

calculate_closed_orbit()

lattice[steerer].K -= dI

ORM: handle exceptions
def measure_orbit_response(steerers, dI):

for steerer in steerers:

try:

lattice[steerer].K += dI

calculate_closed_orbit()

finally:

lattice[steerer].K -= dI

Facade: update
def measure_orbit_response(

lattice, steerers, dI):

for steerer in steerers:

t_lat = lattice.update(

steerer, "K", dI)

calculate_closed_orbit(t_lat)

▶ supports: message bus, command
recording, results ↔ machine setting

▶ multiprocessing:
Sequence[commands] →
partitioning[10] → jobs distribution

▶ Preconditions:
▶ calculation / propagation engine
▶ stored lattices, elements

▶ interaction with propagation engine:
separation: more updates than
required new handle: e.g. orbit
response matrix: change steerer
setting: calculate closed orbit. next
steerer: just start with handle again
advantage: propagation of
exceptions: no undefined state

Tracy and
Thor to

thor-scsi-lib:
Lessons
learned

P. Schnizer
et al.

Acknowledgement

Thor scsi

Towards an
architecture

Far view

Architecture:
building block

Implementation

Thor scsi and
(py)AT

Analysis and optimisation

ORM: dangerous
def measure_orbit_response(steerers, dI):

for steerer in steerers:

lattice[steerer].K += dI

calculate_closed_orbit()

lattice[steerer].K -= dI

ORM: handle exceptions
def measure_orbit_response(steerers, dI):

for steerer in steerers:

try:

lattice[steerer].K += dI

calculate_closed_orbit()

finally:

lattice[steerer].K -= dI

Facade: update
def measure_orbit_response(

lattice, steerers, dI):

for steerer in steerers:

t_lat = lattice.update(

steerer, "K", dI)

calculate_closed_orbit(t_lat)

▶ supports: message bus, command
recording, results ↔ machine setting

▶ multiprocessing:
Sequence[commands] →
partitioning[10] → jobs distribution

▶ Preconditions:
▶ calculation / propagation engine
▶ stored lattices, elements

▶ interaction with propagation engine:
separation: more updates than
required new handle: e.g. orbit
response matrix: change steerer
setting: calculate closed orbit. next
steerer: just start with handle again
advantage: propagation of
exceptions: no undefined state

Tracy and
Thor to

thor-scsi-lib:
Lessons
learned

P. Schnizer
et al.

Acknowledgement

Thor scsi

Towards an
architecture

Far view

Architecture:
building block

Implementation

Thor scsi and
(py)AT

Design & Analysis: handling (magnet) families

▶ families: subset of magnets

▶ layer: analysis and optimisation
▶ implementation: separate

▶ selecting subset → generator
▶ apply change → lambda function

Tracy and
Thor to

thor-scsi-lib:
Lessons
learned

P. Schnizer
et al.

Acknowledgement

Thor scsi

Towards an
architecture

Far view

Architecture:
building block

Implementation

Thor scsi and
(py)AT

Single particle dynamics: an architecture
Proposal: overview

Processor

Preprocessor Postprocessor

Analysis / Optimisation Layer

Facade

Lattice ID
Element ID's Property ID's, values
phase space

Lattice Id
phase space
observers

preprocessor:
flattens assemblies to sequence
combine global to local

Command recorder Lattice
recorder

Lattice
Datalake

post processor
combines, extracts (e.g. I1..I5)

Details explained below, influenced by python architecture patterns [7]

Tracy and
Thor to

thor-scsi-lib:
Lessons
learned

P. Schnizer
et al.

Acknowledgement

Thor scsi

Towards an
architecture

Thor scsi and
(py)AT

Thor scsi and (py)AT
status →Modernised architecture

Status
▶ Element description: (abstract base

type?)
▶ processor: maps strings → propagator
▶ analysis scripts: tied to processor

implementation

Modernised architecture
▶ processor: propagator implementation
← from abstract base type

▶ AT legacy processors: provide proxies
to make them callable

Refactoring recommendations

▶ Split up of code base:
▶ C code integrator: used by AT and pyAT e.g. “at integrators”
▶ AT matlab code base: e.g. “AT”
▶ python code base: e.g. “py(AT)”

development: git submodules?

Software architects and engineers: supervise and steer process

Tracy and
Thor to

thor-scsi-lib:
Lessons
learned

P. Schnizer
et al.

Acknowledgement

Thor scsi

Towards an
architecture

Thor scsi and
(py)AT

What’s missing
From steady state to transient

Or the concept of time (compare Functional mockup interface standard) or open
simulation platform [11, 12].

Steady state

▶ make change

▶ wait

▶ inspect result

Transient
▶ split up of calculation

▶ different speed

▶ exchange of progress
▶ ti ← change of “machine characteristic”: e.g. kicker fired:

▶ advance all integration until ti
▶ “restart” integration at ti

fhi-standard.org

Tracy and
Thor to

thor-scsi-lib:
Lessons
learned

P. Schnizer
et al.

Acknowledgement

Thor scsi

Towards an
architecture

Thor scsi and
(py)AT

Processor implementation
Language of choice

Boundary conditions

▶ CPU intensive task

▶ core of calculation → defines execution time

Compiled language: C++

▶ implement as templates:
▶ template<typename knob> struct element;

▶ template<typename var> struct phase_space;

▶ processor: dispatch to sub-processor: std variant, polymorphism

Dynamically typed language: JIT

▶ python: fast JIT?

▶ LuaJIT: demonstration by mad-ng

Tracy and
Thor to

thor-scsi-lib:
Lessons
learned

P. Schnizer
et al.

Acknowledgement

Thor scsi

Towards an
architecture

Thor scsi and
(py)AT

py(AT) recommendation: passenger view

▶ Currently: spin up of code base
▶ Consider:

▶ define architecture
▶ data models
▶ interfaces: abstract base classes
▶ layers
▶ components

▶ split up
▶ shared code base
▶ legacy code
▶ language used

▶ adhere: self set standards
▶ gain:

▶ components: simply development separation
▶ layers: separate tasks, separate development
▶ XXX

Target: simplify your life down the road

Tracy and
Thor to

thor-scsi-lib:
Lessons
learned

P. Schnizer
et al.

Acknowledgement

Thor scsi

Towards an
architecture

Thor scsi and
(py)AT

Conclusion

▶ Thor scsi: refactored code base, python interface, UI experience

▶ pyAT: active vibrant community, review of legacy code
▶ Proposal:

▶ architecture review, split up of repository → more managble code functionality
increasing

▶ layers / components:
▶ upcoming needs → changes → simpler implementation
▶ work on subparts
▶ roll your on: build on higher level products

▶ thor-scsi-lib next step: refactoring to processor

Tracy and
Thor to

thor-scsi-lib:
Lessons
learned

P. Schnizer
et al.

Acknowledgement

Thor scsi

Towards an
architecture

Thor scsi and
(py)AT

Tracy and
Thor to

thor-scsi-lib:
Lessons
learned

P. Schnizer
et al.

Acknowledgement

Thor scsi

Towards an
architecture

Thor scsi and
(py)AT

J. Bengtsson, W. Rogers, and T. Nicholls.
A CAD tool for linear optics design: A controls engineer’s geometric approach
to hill’s equation, 2021.

Z. He, J. Bengtsson, M. Davidsaver, K. Fukushima, G. Shen, and M. Ikegami.
The fast linear accelerator modeling engine for FRIB online model service,
2016.

L. Deniau and C. I. Tomoiaga.
Generalised Truncated Power Series Algebra for Fast Particle Accelerator
Transport Maps.
In 6th International Particle Accelerator Conference IPAC2015, Richmond, VA,
USA, pages 374–377, 2015.

Wenzel Jakob, Jason Rhinelander, and Dean Moldovan.
pybind11 – seamless operability between c++11 and python, 2017.
https://github.com/pybind/pybind11.

T. Atkinson, M. Dirsat, O. Dressler, P. Kuske, and H. Rast.

Tracy and
Thor to

thor-scsi-lib:
Lessons
learned

P. Schnizer
et al.

Acknowledgement

Thor scsi

Towards an
architecture

Thor scsi and
(py)AT

Development of a non-linear kicker system to facilitate a new injection scheme
for the BESSY II storage ring.
In Proceedings of IPAC2011, San Sebastián, Spain, 2011.

P. Schnizer, W. Sulaiman Khail, J. Bengtsson, and M. Ries.
Progress on thor scsi development.
In 14th International Particle Converence Venezia, pages 3366–3369, 2023.

Harry Percival and Bob Gregory.
Architecture Patterns with Python.
O’Reilly Media, Inc., 2020.

Wes McKinney.
Data Structures for Statistical Computing in Python.
In Stéfan van der Walt and Jarrod Millman, editors, Proceedings of the 9th
Python in Science Conference, pages 56 – 61, 2010.

S. Hoyer and J. Hamman.
xarray: N-D labeled arrays and datasets in Python.
Journal of Open Research Software, 5(1), 2017.

Tracy and
Thor to

thor-scsi-lib:
Lessons
learned

P. Schnizer
et al.

Acknowledgement

Thor scsi

Towards an
architecture

Thor scsi and
(py)AT

Ian Foster.
Designing and Building Parallel Programs: Concepts and Tools for Parallel
Software Engineering.
Addison-Wesley Longman Publishing Co., Inc., USA, 1995.

OSP Interface Specification OSP-IS, Febrary 2022.

Florian Perabo, Daeseong Park, Mehdi Karbalaye Zadeh, Øyvind Smogeli, and
Levi Jamt.
Digital twin modelling of ship power and propulsion systems: Application of
the open simulation platform (OSP).
In 2020 IEEE 29th International Symposium on Industrial Electronics (ISIE),
pages 1265–1270, 2020.

	Acknowledgement
	Thor scsi
	Refactoring
	Data models
	Lessons learned: thor-scsi refactoring

	Towards an architecture
	Far view
	Architecture: building block
	Implementation

	Thor scsi and (py)AT

