

Universität Hamburg

PYAT FOR FCC-EE OPTICS CORRECTIONS

Elaf Musa PHD student at the Deutsches Elektronen-Synchrotron DESY Supervisors: Ilya Agabove, Tessa Charles

Acknowledgements S.Liuzzo, S.White, L.Carver, L.Malina and all the AT collaboration team

FCCIS – The Future Circular Collider Innovation Study. This INFRADEV Research and Innovation Action project receives funding from the European Union's H2020 Framework Programme under grant agreement no. 951754.

Table of content

- Orbit and optics corrections in FCCee
- Liner optics from closed orbit algorithm (LOCO)
- LOCO PyAT based implementation
- Errors corrections for Fcc-ee V22 Z Lattic in PyAT
- LOCO in the Python library for simulated commissioning of synchrotrons (Fcc-ee V22 Z example)

• The Future Circular Collider (FCC), with a circumference of 90 km, is one of the next planned high-performance particles colliders. aims to push the limits of the luminosity and the size of the electrons beam that can be achieved.

3064 dipoles, and 1876 quadrupoles and 632 sextupoles and other elements.

Schematic diagram of the FCC-ee [CDR 2022]

K. Oide, June 1, 2023 @ 168th FCC-ee Optics Design Meeting & 39th FCCIS WP2.2 Meeting

Beam energy	[GeV]	45.6	80	120	182.5	
Layout			PA3	1-3.0		
# of IPs		4				
Circumference	[km]	90.658816				
Bend. radius of arc dipole	[km]		9.9	036		
Energy loss / turn	[GeV]	0.0394	0.374	1.89	10.42	
SR power / beam	[MW]		5	0		
Beam current	[mA]	1270	137	26.7	4.9	
Colliding bunches / beam		15880	1780	440	60	
Colliding bunch population	$[10^{11}]$	1.51	1.45	1.15	1.55	
Hor. emittance at collision ε_x	[nm]	0.71	2.17	0.71	1.59	
Ver. emittance at collision ε_y	[pm]	1.4	2.2	1.4	1.6	
Lattice ver. emittance $\varepsilon_{y,\text{lattice}}$	[pm]	0.75	1.25	0.85	0.9	
Arc cell		Long	90/90	90,	/90	
Momentum compaction α_p	$[10^{-6}]$	28.6 7.4				
Arc sext families		75 146				
$\beta^*_{x/y}$	[mm]	110 / 0.7	220 / 1	240 / 1	1000 / 1.6	
Transverse tunes $Q_{x/y}$		218.158 / 222.200	218.186 / 222.220	398.192 / 398.358	398.148 / 398.182	
Chromaticities $Q'_{x/y}$		0 / +5	0 / +2	0 / 0	0 / 0	
Energy spread (SR/BS) σ_{δ}	[%]	0.039 / 0.089	0.070 / 0.109	0.104 / 0.143	0.160 / 0.192	
Bunch length (SR/BS) σ_z	[mm]	5.60 / 12.7	3.47 / 5.41	3.40 / 4.70	1.81 / 2.17	
RF voltage 400/800 MHz	[GV]	0.079 / 0	1.00 / 0	2.08 / 0	2.1 / 9.38	
Harm. number for 400 MHz		121200				
RF frequency (400 MHz)	MHz	400.786684				
Synchrotron tune Q_s		0.0288	0.081	0.032	0.091	
Long. damping time	[turns]	1158	219	64	18.3	
RF acceptance	[%]	1.05	1.15	1.8	2.9	
Energy acceptance (DA)	[%]	± 1.0	± 1.0	± 1.6	-2.8/+2.5	
Beam crossing angle at IP	[mrad]		±	15		
Crab waist ratio	[%]	70	55	50	40	
Beam-beam ξ_x/ξ_y^a		0.0023 / 0.096	0.013 / 0.128	0.010 / 0.088	0.073 / 0.134	
Lifetime $(q + BS + lattice)$	[sec]	15000	4000	6000	6000	
Lifetime $(lum)^b$	[sec]	1340	970	840	730	
Luminosity / IP	$[10^{34}/cm^2s]$	140	20	5.0	1.25	
Luminosity / IP (CDR, 2IP)	$[10^{34}/cm^2s]$	230	28	8.5	1.8	

Linear Optics from Closed Orbits (LOCO) Established at NSLS by J. Safranek, 1996

The response matrix is the shift in orbit at each BPM for a change in strength of each steering magnet.

$$C_{mn} = rac{\sqrt{eta_meta_n}}{2\sin(\pi
u)} {
m cos}(\pi
u-\phi(s)+\phi(s_0)) + rac{\eta_i\eta_j}{lpha_cL_o}$$

The measured data are fitted to a lattice model by adjusting parameters in iterations

$$C_{model,i,j} = \hat{C}_{i,j} + \sum_{k} \frac{\partial \hat{C}_{i,j}}{\partial g_k} \Delta g_k + \hat{C}_{i,j} \Delta x^i - \hat{C}_{i,j} \Delta y^j + \sum_{l} \frac{\partial \hat{C}_{i,j}}{\partial p_l} \Delta p_l$$
$$\Delta g_k = (\sum_{ij} \sum_{k} \frac{\partial \hat{C}_{i,j}}{\partial g_k}^T W \frac{\partial \hat{C}_{i,j}}{\partial g_k})^{-1} \sum_{k} \frac{\partial \hat{C}_{i,j}}{\partial g_k} W(C_{model,i,j} - \hat{C}_{i,j})$$

LOCO PyAT passed implementation

- To investigate the possibility of using LOCO for FCC-ee lattices we used the Python accelerator toolbox (PyAT) to implement the code and utilized it to produce preliminary results.
- Used lattice Fcc-ee V22 Z FODO arc lattice

K. Oide, June 1, 2023 @ 168th FCC-ee Optics Design Meeting & 39th FCCIS WP2.2 Meeting

Parameter	Value
Beam energy [Gev]	45.6
Hor. emittance(nm)	0.71
Vert. emittance(pm)	1.4
Horizontal Tune	218.158
Vertical Tune	222.2
Chromaticities x/y	0 / +5
β_* at IP x/y (mm)	110 /0.7

 Appling hor & ver displacement errors randomly distributed via a Gaussian distribution, truncated at 2.5 sigma.

> at.shift_elem(elem: Element, deltax: float = 0.0, deltaz: float = 0.0, relative: Optional[bool] = False)

• Erros applied to the lattice (1420) arcs quadrbols and (586) arcs sextupoles.

Correction procedure

BPMS & Correctors added next to each quadrpole BPMs noise = 0.0 Radiation off Girders are not included

Switch off Sext	Field & Misalignments errors applied	Orbit correction	Switch on Sext	Tune & chromaticity correction + LOCO and coupling correction in iterations
--------------------	---	------------------	-------------------	---

- SVD used to invert the response matrix to find the proper orbit correctors kicks θ that satisfy the relation $\Delta x + C\Delta \theta = 0$. Choosing the proper cut of the singular values.
- Fitting the tune and chromaticity

fit_tune(ring, get_refpts(ring, 'QF*'), get_refpts(ring, 'QD*'),nominal_tune)
fit_chrom(ring, get_refpts(ring, 'SF*'), get_refpts(ring, 'SD*'),nominal_crom)

Correction procedure

Switch off Sext	Field & Misalignments errors applied	Orbit correction	Switch on Sext	Tune & chromaticity correction + LOCO iterations including coupling
--------------------	---	------------------	-------------------	---

LOCO

• Calculating the Jacobian matrix: $J = \sum_{k} \frac{\partial C_{i,j}}{\partial g_k}$ Each column of the Jacobian matrix is the derivative of the response matrix over one fitting Parameter.

Reducing Processing Time

- Limiting the number of steering magnets in the response matrix.
 20 Cor used out of 1876
- Parallel processing in DESY maxwell cluster J (1876, 20, 1876) ~ 15 min

Code profiling and optimisation.

$$\Delta g_k = \left(\sum_{ij} \sum_k \frac{\partial C_{i,j}}{\partial g_k}^T W \frac{\partial C_{i,j}}{\partial g_k}\right)^{-1} \qquad \begin{array}{l} \text{a = np.sum(dcx[i], axis=0)} \\ \text{b = np.sum(dcx[j], axis=0)} \\ \text{Ax[i, j] = np.dot(a, b)} \end{array}$$

• A.Franchi S. Liuzzo and Z. Marti, Analytic formulas for the rapid evaluation of the orbit response matrix and chromatic functions from lattice parameters in circular accelerators, https://arxiv.org/abs/1711.06589

Results

<5 seeds>	rms orbit	rms orbit y	Δβx/βx %	∆βу/βу %	Δ ηχ	Δ ηγ	εh/ εv
	x (µm)	(µm)	(sext on)	(sext on)	(mm)	(mm)	
Error 10 (µm)	418.931	544.047	0.12211	0.1789	1970.62	20753.3	
Correction	0.1682	0.0602	0.011	0.0516	1.601	3.3234	3329.4
Error 30 (µm)	1153.82	2978.86	0.255	0.6494	2178.39	6048.73	
Correction	0.7433	0.490	0.1291	0.355	6.77	14.79	426.098
Error 50 (µm)	2173.02	5174.996	0.400	0.7294	11039.5	187679	
Correction	3.066	3.481	0.154	0.4273	7.576	15.813	213.262

LOCO in the Python library for simulated commissioning of synchrotrons

- Work on fully Integration of LOCO on the Python library for simulated commissioning is ongoing.
- LOCO has been tested using test lattice and the Fcc-ee V22 Z lattice.
- LOCO modules will be available in the Python Simulation Commissioning correction package

pySC.correction.loco_modules

LOCO in the Python library for simulated commissioning of synchrotrons

Generating Jacobian

generatingJacobian(SC, C_model, CMstep, CorOrds, SC.ORD.BPM, concatenate(quadsOrds), Individuals=True, dk, debug=True, trackMode='ORB', useIdealRing=False,skewness = False, order=1, method='add', includeDispersion=False, rf_step=RFstep, cav_ords=CAVords)

Measured ORM

SCgetMeasurRM(SC, BPMords, CMords, trackMode, dkick) → bpm_reading

Minimization problem & obtaining the fit parameters $\chi^2 = \sum_{i,i} \frac{(C_{model,i,j} - C_{i,j})^2}{\sigma_i^2}$

Setting correction

SC.set_magnet_setpoints(SC, quadOrds, -r, skewness = False, order, method)

(Fcc-ee V22 Z lattice example)

enable_6d() Setting the cavity parameters Tapering

Errors Applied

Туре	Field Errors
Arc quadrupole Arc sextupoles	$\begin{array}{l} \Delta k/k = 2\times 10^{-4} \\ \Delta k/k = 2\times 10^{-4} \end{array}$
IR quadrupole IR sextupoles	$ \Delta k/k = 1 \times 10^{-4} \Delta k/k = 2 \times 10^{-4} $

lattice optics with errors (1 seed):

Δβx/βx: 9.2141% Δβy/βy: 38.2045% Δηx: 12.3859 Δηy: 2.6723e-12 mm Tune: [218.162, 222.209, 0.0288] Chromaticity: [0.1294, 5.2607, -0.0246]

(Fcc-ee V22 Z lattice example)

LOCO 1st iteration:

Δβx/βx: 1.4666% Δβy/βy: 7.4342% Δηx: 3.4701 Δηy: 8.0814e-12 mm Tune: [218.1584, 222.1786] Chromaticity: [0.03895, 5.0126]

LOCO 2^{ed} iteration:

Δβx/βx: 0.9190% Δβy/βy: 0.8944% Δηx: 2.8573 Δηy: 3.4580e-12 mm Tune: [218.1569, 222.2036] Chromaticity: [-0.0257, 5.2638]

LOCO 3^{ed} iteration:

Δβx/βx: 0.6136%
Δβy/βy: 0.2899%
Δηx: 3.1049
Δηy: 3.2505e-12 mm
Tune: [218.1574, 222.2000]
Chromaticity: [0.0268, 5.2584]

(Fcc-ee V22 Z lattice example)

Summery

- The impacts of the arc elements alignment errors on the beam optics of the Fcc-ee V22 Z Lattice were investigated.
- The application of closed orbit-based optics correction LOCO for FCC-ee lattice was implemented using the Python accelerator toolbox (PyAT).
- LOCO in the Python Simulation Commissioning with test results.

Outlook

BPMs noise = 0.0 Radiation off or On with field errors Girders are not included

Including the BPM gains and steering magnet calibrations

$$C_{model,i,j} = \hat{C}_{i,j} + \sum_{k} \frac{\partial \hat{C}_{i,j}}{\partial g_k} \Delta g_k + \hat{C}_{i,j} \Delta x^i - \hat{C}_{i,j} \Delta y^j + \sum_{l} \frac{\partial \hat{C}_{i,j}}{\partial p_l} \Delta p_l$$

• Novel approaches for optics correction such as Bayesian based correction will be investigated in the next.

THANK YOU FOR YOUR ATTENTION