
Collective Effects Development in PyAT
AT Workshop - 03/10/23

Lee Carver
Acknowledgements: Simon White

OVERVIEW

● Introduction

● General PyAT developments

● Major new functionalities
○ Multi-bunch, parallelised collective effects
○ New PassMethods

● Future developments

Lots more information at:
https://atcollab.github.io/at/p/howto/Collective.html

27/02/2019
Page 2

https://atcollab.github.io/at/p/howto/Collective.html

GENERAL PYAT DEVELOPMENTS

● Convert ‘atfastring’ to python (‘fast_ring’).
○ This function reduces the number of lattice

elements from a full ring down to 4: an RF Cavity,
a linear M66 matrix, a non linear element, and a
quantum diffusion element.

○ This function is essential if you want to track very
large numbers of particles.

● New function added: ‘simple_ring’ (‘atsimplering’ in
MatLab).

○ The user provides a list of global machine
parameters: energy, circumference, harmonic
number, Qx, Qy, momentum compaction factor
(other optional arguments possible).

○ Returns a simple lattice, similar to the output of
‘fast_ring’.

● It is now easier to generate a lattice with few
elements that can easily be used for collective
effects simulations.

27/02/2019
Page 3

~4000
elements

~4 elements

GENERAL PYAT DEVELOPMENTS

● Beam generation functions were also added to
PyAT
○ atsigmamatrix → sigma_matrix
○ atbeam → beam

● For sigma_matrix a variety of inputs can be
provided:
○ A lattice
○ A twiss_in
○ A list of lattice parameters
○ An array of shape (6,N) representing a beam

distribution

● For beam the input is a sigma_matrix and a
number of particles.
○ Same as MatLab

27/02/2019
Page 4

MULTIBUNCH

● PyAT is now able to do multi-bunch simulations. Very simple to setup:

ring.set_fillpattern(arg), where arg can be:
An integer saying number of symmetrically filled buckets
An array of length harmonic number. The sum of this array must equal 1.

ring.set_beam_current(total_current):
Where total_current is in Amperes.

● Once you set these parameters, other key attributes are set:

ring.nbunches
ring.bunch_currents
ring.bunch_spos

● And you are all set! But how does it work?

27/02/2019
Page 5

MULTIBUNCH

● When you define your array of particles, you create one big array containing particles for
all bunches. E.g.

Nbunches = 10
Nparticles_per_bunch = 100
Particles is an array of shape (6, 1000)

● All collective effects PassMethods, the particles are accessed in the following way:

● Or in python speak:

Particles[:, BunchNumber::Nbunches] #All particles of bunch BunchNumber

27/02/2019
Page 6

[b#0p#0, b#1p#0, b#2p#0,... b#0p#1, b#1p#1, b#2p#1,...]

MULTIBUNCH

● This gives flexibility for parallelisation.
○ Each particle has a bunch index that

is dependent on its position in the
array and not on the mpi rank.

● Parallelisation is coded using mpi4py.
○ n instances of the same script are

launched simultaneously.
○ Inside the collective effects

passmethod, key information is
exchanged (slice information, number
of particles per slice) which allows
each core to compute the correct kick

● Significant speedup with many cores.

27/02/2019
Page 7

Single bunch with longitudinal wake.
Parts per slice is fixed.

MULTIBUNCH

27/02/2019
Page 8

Pros:
● You can easily split any number of bunches over any number of cores.

○ E.g. 1 bunch over 50 cores or 50 bunches over 25 cores.

● You can run multi-bunch simulations with 1 particle per bunch.

● The CPU load over all cores is even.

Cons:
● The number of particles in each thread must be an integer multiple of the number of

bunches.
○ E.g. 4 cores, 100 bunches. Must have at least 100 particles on each core. Otherwise a

bucket may be considered empty!
○ 1 particle per bunch does not work for parallelised cases!

● An extra step is required to unfold your array back into bunches.

NEW PASSMETHODS

● ImpedanceTablePass is now obsolete.
○ It actually took a Wake Field as input.

● We have a new pass method, WakeFieldPass.
○ Supported by the new library, atimplib, which contains many useful functions

that are used within the collective effects PassMethods.

● A new structure of python functions and classes has been added to provide
useful features for collective effects simulations.
○ These will be introduced in the next slide.

● A new beam monitor for multibunch simulations has also been added
(BeamMoments).
○ It computes means and standard deviations for all 6 planes bunch-by-bunch and

turn-by-turn.
○ Slicing is currently being developed to be able to save the bunch-by-bunch

distributions for a subset of turns and bunches.
27/02/2019

Page 9

COLLECTIVE EFFECTS

● In at/pyat/at/collective we have the full package of collective effects functions.
○ wake_functions.py - contains the definitions for long_resonator, trans_resonator,

trans_rw and also a function for convolution of an array with a gaussian

● There are two main classes, one is called a wake_object.
○ The wake can be built up with multiple wakes (combination of analytical and

from file).
○ All wakes will use a common srange (interpolation will automatically be used).

● The other is a wake_element.
○ The wake_element is what is added to the lattice.
○ It can be created using a wake_object that the user has built up.
○ Many standard functions exist for easily creating the commonly used elements

(ResWallElement, LongResonatorElement, TransResonatorElement)

27/02/2019
Page 10

COLLECTIVE EFFECTS

27/02/2019
Page 11

MULTIBUNCH INSTABILITIES

● Some multibunch instability benchmarking has been made.

● We would like to make some more.

● Both of these cases can be found in: at/pyat/examples/CollectiveEffects

27/02/2019
Page 12

Analytical GR: 272.59s-1

Simulated GR: 255.08s-1

Transverse Resistive Wall - MB
Longitudinal Coupled Bunch Instability - MB

HAISSINSKI SOLVER

● A short range Haissinski solver for arbitrary wakes has been implemented.
○ Based on the algorithms developed by Warnock and Bane*.

● Good agreement with tracking, comparisons with measurements made for the EBS*.

27/02/2019
Page 13

● An example file can be found in:
at/pyat/examples/CollectiveEffects/LongDistribution.py

*R. Warnock and K. Bane, ‘Numerical solution of the Haïssinski equation for the equilibrium
state of a stored electron beam’, Phys. Rev. Accel. Beams 21, 124401

*L. R. Carver et al, ‘Beam based characterization of the European Synchrotron Radiation Facility Extremely Brilliant
Source short range wakefield model’, Phys. Rev. Accel. Beams 26, 044402

Long Resonator
comparison

BEAMLOADING PASSMETHOD

● Active beam loading has been added.
● Beam is sliced longitudinally and the induced voltage is computed by summing voltage contribution from

each slice.

● Two methods available
○ PHASOR (where a running total is kept)
○ WAKE (where a turn history is kept and it is recomputed each time).

● Generator voltage and phase is computed and applied (with a gain factor).

27/02/2019
Page 14

Full details in IPAC23 proceedings (not
yet released):
L.R. Carver et al, ‘Beam loading
simulations in PyAT for the ESRF’

FUTURE DEVELOPMENTS

● Harmonic cavity with passive beamloading has been implemented but not yet merged with the
master.

○ Planned benchmarking with SLS2 case in the pipeline. Once I can show it is working well, it will be
merged.

○ Waiting for a few developments (BeamMoments slicing and SimpleRing [now merged]).

● Possibility to generate a beam that is matched to the longitudinal bucket including impedance
sources.

○ Some work on this has started. Needs to be properly integrated and generalised.

● Multi-bunch haissinski solvers
○ I have a solver that approximately works but very far from being integrated into AT

● Ion effects?
○ Big project.

● Improved unit testing of multi-bunch tracking and collective effects
○ Example files are not sufficient.
○ MPI tests are possible?

27/02/2019
Page 15

