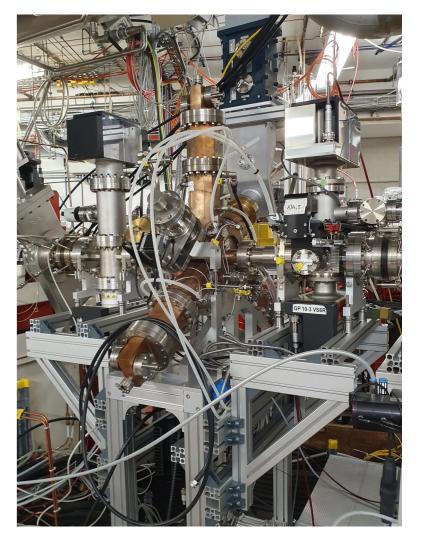



### HARMONIC CAVITY SIMULATIONS

Comparison pyAT, Pelegant & mbtrack/mbtrack2

Teresia Olsson, AT Workshop, 2-3 October 2023




# INTRODUCTION





### WHY SIMULATE HARMONIC CAVITIES?

- Harmonic cavity = cavity operated at harmonic of the main  $RF \rightarrow$  change the RF potential seen by the beam.
- Can be passive/active and normal/superconducting.
- HCs already used in many machines: mainly to increase lifetime.
- Interest for HCs has increased due to MBA upgrades  $\rightarrow$  lifetime, stability, intrabeam scattering mitigation.
- But HCs can also cause problems: transient beam loading, longitudinal instabilities.



3<sup>rd</sup> order active normal conducting harmonic cavity from ALBA installed in BESSY II





#### **IMPORTANT USER CASES**

- Transient beam loading when operating with gaps in the fill pattern.
- Longitudinal coupled-bunch instabilities driven by the HC impedance or caused by flattening of the potential well.
- Effect on intrabeam scattering.
- Effect on transverse + longitudinal single bunch instabilities.
- Effect on transverse coupled-bunch instabilities.
- RF feedback behaviour  $\rightarrow$  especially of interest for active HCs but also Robinson instability.
- Injection studies with HC  $\rightarrow$  change of RF bucket, accumulation, missed shots.



Often require at least 10 000 particles per bunch and tracking for > 50 000 turns (depends on damping times)

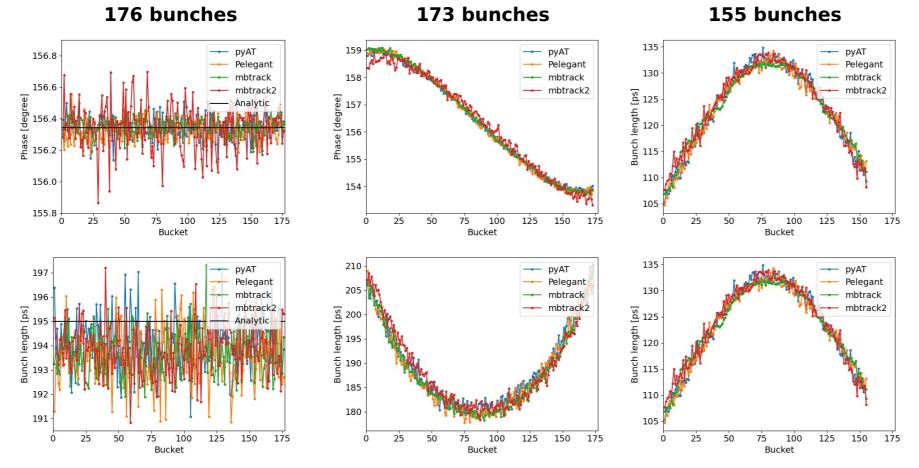


#### **BENCHMARKING OF CODES**

- Four codes chosen:
  - pyAT
  - Pelegant
  - mbtrack (C++ version available at MAX IV)
  - mbtrack2 (Python version available at Soleil)
- MAX IV 3 GeV ring case  $\rightarrow$  only 176 bunches.
- Requirements: 10 000 particles per bunch + 150 000 turns.
- Looked at:
  - User-friendliness
  - Physics results Work in progress so this is just my personal first impressions
  - Execution time



## BENCHMARKING




### **USER-FRIENDLINESS**

|                       | руАТ                                                                                                                                              | Pelegant                                                                                                                            | mbtrack                                                                                                   | mbtrack2                                                                                            |
|-----------------------|---------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------|
| Installation          | Easy but need to choose<br>which of three parallelisation<br>options to use at compile time                                                       | Complicated to build from<br>source but precompiled<br>binaries exist                                                               | Very easy                                                                                                 | Easy unless HD5F and h5py<br>not already built with MPI<br>support                                  |
| Documentation         | Good, manual and example scripts                                                                                                                  | Good, manual and example scripts + <b>user forum</b>                                                                                | Manual exist, but not so detailed                                                                         | Good, manual included as part of example notebooks                                                  |
| Setting up simulation | Easy, but a bit complicated if<br>you want to use MPI                                                                                             | Several steps required:<br>creating beam, constructing<br>one turn map, setting up<br>cavities correctly<br>RF feedback complicated | Very easy, but need to insert<br>lattice parameters manually                                              | Very easy, lattice parameters<br>can be imported directly from<br>pyAT but in a questionable<br>way |
| Change settings       | Quick                                                                                                                                             | Quick, but new fill pattern has to be generated separately                                                                          | Quick, but new fill pattern has<br>to be generated separately<br>(just text file)                         | Quick                                                                                               |
| Flexibility           | Good                                                                                                                                              | Very complicated to modify or add features                                                                                          | Difficult                                                                                                 | Good                                                                                                |
| Parallelisation       | Multiprocessing, openMP, MPI<br>Number of particles need to<br>be multiple of number of<br>bunches, but no restriction for<br>number of processes | No restrictions, but relative<br>number of particles per bunch<br>give bunch charge                                                 | Number of process = number<br>of bunches $\rightarrow$ need to<br>oversubscribe cores                     | Number of process = number of bunches $\rightarrow$ need to oversubscribe cores                     |
| Output analysis       | Easy                                                                                                                                              | Data stored in SDDS so need tools to access                                                                                         | Easy, but confusing due to<br>conventions for head/tail of<br>train and phase on pos slope<br>of sin wave | Easy                                                                                                |

### **PHYSICS RESULTS SO FAR**

• Simulations with MC without beam loading + passive HC with beam loading.



Results agree between all codes, but mbtrack2 results are slightly different and a bit more noisy

#### Next step to compare results with beam loading in MC and then with active HC



Teresia Olsson, AT Workshop, 2-3 Oct 2023

### **EXECUTION TIME**

- For machines with many bunches execution time is crucial.
- Also important if one wants to include a lot of effects for a self-consistent simulation.
- No optimisation at all done  $\rightarrow$  only followed the installation instructions provided in documentation.
- For codes with builds that required root permissions or dependencies not existing on the cluster containers were used → this can effect the execution time.

| 10 000 particles per bunch, 176 bunches, 150 000 turns |  |
|--------------------------------------------------------|--|
|--------------------------------------------------------|--|

| 10 000 particles, 176<br>bunches, 150 000 turns | руАТ     | Pelegant<br>(container) | mbtrack  | mbtrack2<br>(container)                       |
|-------------------------------------------------|----------|-------------------------|----------|-----------------------------------------------|
| 1 node                                          | 26.1 min | 4.19 h                  | 25.8 min | Not able to run because<br>of oversubscribing |
| 2 nodes                                         | 20.9 min | > 10 h                  | > 10 h   | Not able to run because<br>of oversubscribing |
| 3 nodes                                         | 15.6 min | > 10 h                  | 7.7 h    | Not able to run because<br>of oversubscribing |
| 4 nodes                                         |          |                         |          | 47.5 min                                      |



# **DISCUSSION TOPICS**



### **BEAM DYNAMICS MODEL**

- All codes do one-turn map = linear matrix + classic radiation + quantum diffusion + non-linear effects.
- PyAT: self-consistent model  $\rightarrow$  calculated directly from the lattice.
- Pelegant:
  - Self-consistent for uncoupled lattice
  - Radiation model can cause problems with orbit and equilibrium emittance.
- mbtrack/mbtrack2:
  - Separation of transverse/longitudinal  $\rightarrow$  not symplectic except for uncoupled lattice without dispersion at the observation point.
  - mbtrack2 uses average optics functions in one-turn map when importing lattice from pyAT  $\rightarrow$  Does this give correct physics?
  - Radiation model can cause problems with orbit and equilibrium emittance.
- For purely longitudinal studies of HCs this is not a problem, but we also want to study the
  effect of HCs on the transverse plane → when are these models not valid anymore?



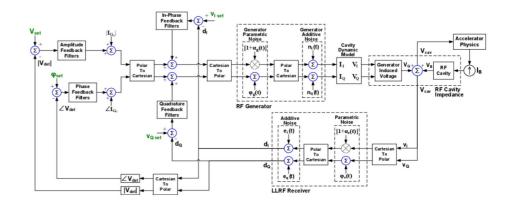
#### **DISCUSSION TOPICS**

### **CAVITY CONVENTIONS**

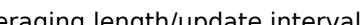
- Conventions for longitudinal plane is a mess...
- Two cavity conventions are most common:
  - Sine wave  $\rightarrow$  for cavities without beam loading
  - Cos wave  $\rightarrow$  for cavities with beam loading (phasors)

 $V\sin(\omega_{RF}t+\phi)$  $V\cos(\omega_{RF}t+\psi)$ 

• AT/pyAT use a different one:  $-V \sin(\omega_{RF}(t - TimeLag/c))$ 


**Parameter is called TimeLag, but it is actually a lag in cτ and not time.** 

- This convention causes a lot of headache and wasted time  $\rightarrow$  how easy will it be to implement a full model of the RF feedback in this convention?
- Is this the time to change it to avoid future problems?




#### **RF FEEDBACK**

- For MCs and active HCs RF feedback must be included to keep RF voltage constant with ۲ beam loading.
- Two different type of feedback implementation exists: •
  - "Compensation" scheme: from beam loading directly calculate required generator phasor
  - Model of feedback system  $\rightarrow$  requires filter coefficients
- The two implementations are useful for different • user cases:
  - Studies of settings and behaviour at equilibrium.
  - Behaviour of RF feedback, effect of feedback on instability thresholds, effect of RF noise etc.



One parameter is common: averaging length/update interval  $\rightarrow$  not numerically robust = • difficult to find good settings and machine/simulation dependent.





**Feedback model in Pelegant** 

#### CONCLUSIONS

- pyAT has huge potential for being able to simulate all collective effects with a fully self-consistent single particle dynamics model.
- pyAT allows for full flexibility  $\rightarrow$  code can easily be modified and extended if required.

### **SUGGESTIONS FOR THE FUTURE**

- pyAT should be separated from Matlab AT to allow for full use of Python functionality and avoid legacy issues, e.g. modernisation of the integrators should be discussed.
- Two options for the RF feedback should be implemented to cover all user cases.
- We should come together and start to join tools: middlelayer, simulators, virtual accelerators, digital twins.
- We need to start to value our codes  $\rightarrow$  strategy & resources for long-term maintenance and support.
- We should build a user community around  $pyAT \rightarrow user$  meetings, user forum etc.
- Build connections with the supercomputing community to optimise the parallel performance of our codes.

#### Thank you to MAX IV for allowing me to borrow their cluster resources

