

AT Workshop, 2-3 Oct 2023, ESRF, Grenoble, France

Automated Startup and Commissioning Tests at ALS

N H BALANCE

Thorsten Hellert

IT MAR L

Outline

- Introduction
 - Overview of Advanced Light Source Upgrade Project
 - Integration of SC Toolkit into ALS Control System
- Commissioning Tests at ALS
 - First turn threading
 - Pseudo-orbit correction
 - Turn-by-turn BBA

Design Choice of the Advanced Light Source Upgrade

- Goal: Diffraction Limited Light Source
 - Brightness increase: $B_{ALS} = 2*10^{19} => B_{ALSU} = 2*10^{21}$
 - Emittance decrease: $\varepsilon_{ALS} = 2000 \text{ pm} => \varepsilon_{ALSU} \sim 100 \text{ pm}$
- **Space Constraint**
 - Use of current building and 12-fold symmetry
- **Requires Strong Focusing Elements**
 - Quadrupole strength: K_{ALS} ~ 3 => K_{ALSU} ~15
 - Sextupole strength: $M_{ALS} \sim 90 => M_{ALSU} \sim 800$
- **Requires Small Aperture**
 - Magnet aperture: $d_{ALS} = 65 \text{ mm} => d_{ALSU} = 40 \text{ mm}$
 - Undulator aperture: $d_{ALS} = 30 \text{ mm} => d_{ALSU} = 6 \text{ mm}$
- Requires on-Axis Swap Out
 - Dynamic aperture: $DA_{ALS} = 120 \text{ mm}^2 => DA_{ALSU} = 3 \text{ mm}^2$
- **Requires Accumulator Ring**
 - Injected beam: $\sigma_{ALS} = 2 \text{ mm} => \sigma_{ALSU} = 60 \mu \text{m}$

DALS AD Eardusizer

IDAVSGUUDe arhanizber

x [µm]

-500 x [μm] -500 500

T. Hellert | Automated Startup and Commissioning Tests at ALS | AT Workshop | Oct 3rd 2023 | ESRF

500

Overview of ALS-U Accelerator Facility

Limited Accessibility of Machine Properties

Power supplies

Setpoints and read back values

Operating machine

High level controls

Realistic Workflow of Toolkit Important

Set Quad to setpoint

- Compensates bending angle difference by setting horizontal CM
- Checks for CM range (clipping)

- Calibration errors of all components
- Includes dipole kick from bending angle (set-point & roll)

Auxiliary structures

- **Diagnostic errors**
 - Injected beam
 - trajectory
- **Injection pattern**

Get BPM reading

- Performs tracking including aperture
- Gets BPM signal from ensemble of particle trajectories

High level

- High level functions use only BPM and setpoints as input
- High level functions write only setpoints

Automated Startup and Commissioning Tests at ALS

- Automated startup and commissioning scripts will be essential for ALS-U
 - Lattice too non-linear to achieve stored beam with conventional methods
 - Scheduled commissioning time for AR and SR very short compared to the operational complexities
- SC Toolkit developed for simulated commissioning and error analysis studies
 - Comprehensive automated lattice correction tools to get from first injection to stored beam
 - Workflow mimics machine operation from the control room

Automated Startup and Commissioning Tests at ALS

- Automated startup and commissioning scripts will be essential for ALS-U
 - Lattice too non-linear to achieve stored beam with conventional methods
 - Scheduled commissioning time for AR and SR very short compared to the operational complexities
- SC Toolkit developed for simulated commissioning and error analysis studies
 - Comprehensive automated lattice correction tools to get from first injection to stored beam
 - Workflow mimics machine operation from the control room
- Integrating SC Toolkit into the control system
 - ALS and ALS-U operated with MML, toolkit written in Matlab
 - ALS lattice very similar to ALS-U AR lattice

Commissioning Tests at ALS

BPM Sum Signal Normalisation

- Reliable BPM Sum Signal Key for First Turn Threading
 - Beam loss detection is very important during early commissioning
 - Turn by turn BPM sum signal provides best path for beam loss detection
- Large Shot-to-Shot and BPM-to-BPM Sum Signal Variation
 - Variation of BPM first turn sum signal over 50 injections and all BPMs is 400% with no beam losses
- BPM Sum Signal Calibration Procedure:
 - 1) use first storage ring BPM to normalize all sum signals with injected bunch charge
 - 2) calculate BPM sensitivity by averaging over many nominal injections and save into file
- Satisfactory Sum Signal Homogeneity:
 - Final sum signal variation below 10%
 - Sufficient for accurate beam loss detection

First Turn Threading

- First Turn Threading at ALS-U:
 - Commissioning simulations show that automated first turn threading algorithm needed to reliable perform regular start up in the storage ring

First Turn Threading in Commissioning Simulation at ALSU-SR

First Turn Threading

• First Turn Threading at ALS-U:

- Commissioning simulations show that automated first turn threading algorithm needed to reliable perform regular start up in the storage ring
- Off Axis Injection at ALS
 - ALS-U AR/SR commissioning will be done using on-axis injection
 - On axis injection at ALS not possible, thus injected beam trajectory must be corrected towards reference trajectory
 - Reference trajectory recorded during nominal injection
- First Turn Threading Test:
 - Add random CM excitations with 3mrad amplitude
 - Threading algorithm reliably restores reference injected beam trajectory

Achieving Stored Beam

Pseudo-Orbit Correction

- The orbit BPM readings can be reliably calculated by averaging the BPM turn-by-turn data over >10 turns
- For off-axis injection a reliable way to achieve stored beam from multi-turn transmission is to correct the pseudo-orbit

Pseudo Orbit Correction Test:

- Add random CM excitations with 1mrad amplitude
- Calculate orbit from turn-by-turn BPM readings taking 50 turns into account
- Pseudo orbit correction reliably restores initial orbit

Turn-by-Turn Beam Based Alignment

- Turn-by-Turn BBA Required for ALS-U
 - Commissioning simulations for ALS-U Storage Ring show that without ~100um rms BPM offsets reliable beam capture can not be expected
 - Initial BPM offsets to be expected at ~500um rms
 - Turn by turn BBA routine mandatory for successful beam capture at ALS-U SR

Turn-by-Turn Beam Based Alignment

- Turn-by-Turn BBA Required for ALS-U
 - Commissioning simulations for ALS-U Storage Ring show that without ~100um rms BPM offsets reliable beam capture can not be expected
 - Initial BPM offsets to be expected at ~500um rms
 - Turn by turn BBA routine mandatory for successful beam capture at ALS-U SR
- TBT BBA Test:
 - Algorithm was tested successfully before summer shutdown

Turn-by-Turn Beam Based Alignment

Turn-by-Turn BBA Required for ALS-U

- Commissioning simulations for ALS-U Storage Ring show that without ~100um rms BPM offsets reliable beam capture can not be expected
- Initial BPM offsets to be expected at ~500um rms
- Turn by turn BBA routine mandatory for successful beam capture at ALS-U SR
- TBT BBA Test:
 - Algorithm was tested successfully before summer shutdown
 - Found offset was within 40um of the one determined by stored beam BBA

GUI Development Underway

• Focus on Accessibility

- Graphical user interface crucial for easy access to turn by turn tools
- Operator level desirable

• GUI Development:

- First prototype of turn by turn GUI available and to be tested in upcoming physics shifts
- Due to significant delays during latest startup no further studies have been possible

GUI Development Underway

• Focus on Accessibility

- Graphical user interface crucial for easy access to turn by turn tools
- Operator level desirable

• GUI Development:

- First prototype of turn by turn GUI available and to be tested in upcoming physics shifts
- Due to significant delays during latest startup no further studies have been possible

Summary and Conclusion

Advanced Light Source Upgrade

- 9 bend achromat lattice with 70pm-rad emittance
- Very fast commissioning process required
- Commissioning Tests at ALS
 - Integration of SC toolkit into ALS control system underway First turn threading, pseudo-orbit correction and turn-by-turn BBA successfully demonstrated at ALS

 - GUI development for easy accessibility underway

