
Particle tracking on a GPU
3 Oct 2023, AT workshop

28 settembre 2023



Dynamic aperture optimization takes forever!!!

I ALBA2 has many sextupoles.

I Dynamic aperture optimization is a minimization problem with high dimensionality.

I At each step of the minimization you need to compute the dynamic aperture

I Computing the dynamic aperture takes time!!

What can you do with a GPU?



CPU vs GPU (Part 1)

I CPU: A lot of effort into optimizing program flow execution (Efficient code branching is hard!!)

I CPU: Each core is almost an independent CPU: duplicated hardware

I CPU: Peripherals interfaces take a lot of space

I GPU: a small number of instruction fetch/decode units are driving many cores in parallel

I GPU: no branch-prediction/out of order execution.

Tracking follows a simple execution flow:
all electrons fly through the same elements in the same order No branching is required

A tracking code does not require (almost) any ”if” instruction



CPU vs GPU (Part 2)

I In a CPU cores can run different programs
Cool! But we don’t need it: we do only tracking!

I A CPU can have a few tens of cores

We can track a few tens of particles in parallel

I In a GPU the same instructions feed a group of cores
That’s fine: every core is running the same tracking

I However, each core operates on different data
Good: each particle has different coordinates and
machine settings

I Each group includes typically 64 to 128 cores

I A GPU can have a few to 100 groups of cores

We can track a few thousands of particles in parallel

The old GPU in my office computer (Nvidia Quadro P600) is worth around 100$ has 3 groups of cores, each with
128 cores→ 384 total cores. Big GPUs (such as the Nvidia Tesla or AMD Instinct series) cost around 7000$ and

have 20 times more cores. Big GPUs also handle some instructions more efficiently
(e.g. transcendental functions)→ faster execution.



(dirty) Tricks and magic to make tracking fast!

Track every particle for 1 turn

Assign 1 particle for each core
(or more to keep the GPU saturated)

Is particle lost?
NoYes

Load a new particle

I merge together consecutive pass-methods
e.g. a straight section followed by a quadrupole can be represented as one single linear transformation. In

UFO this simplification task is demanded to the OpenCL compiler: An intermediate OpenCL

representation of the 1-turn pass method is generated and passed to the compiler for optimization

I Pre-compute expressions whenever possible
The OpenCL compiler is smart enough to evaluate functions (e.g. sin/cos/sqrt) whenever possible.

I 32 bit variables are most of the times good enough
Watch out: the ieee754 CPU standard prescribes 80 bit for the internal representation of double variables.

GPUs instead use 64/32 bit for double and float variables→ CPU/GPU can behave differently

I High order relativistic effects can be neglected (sometimes)
Relativistic effects are quite marginal in multi-bend achromat lattices, at least in the one I have tried

Watch out:
This considerations depend on the specific case

Do not apply this optimization without testing!!!



How does it work?

Generate an OpenCL
representation of the
lattice (pass method)

User inputs the list of
simulation parameters User inputs

 a MAD-X
style lattice

 The pass method is embedded in an
OpenCL function to solve a specific task
 (e.g. DA, closed orbit...)

The kernel is compiled for a
 specific back-end
 (e.g. GPU, CPU)

The code is executed and
 data returned

User inputs 
parameters
value

Results

I Optics parameters (field strength, element lengths...) can be specified per-particle

I The list of per-particle parameters must be specified before compiling the pass-method

I Compiling takes time, but once done the simulation can be repeated for different parameters

I UFO uses OpenCL, a standard promoted by the Khronos group (AMD, Amazon, Apple, ARM, Google,
Intel, Microsoft, NEC, Nokia, NVIDIA, Samsung, Sony, Texas Instruments, Xilinx...)
CUDA is also a popular choice but is not standard, is proprietary and only for NVIDIA



Relativistic exact integrator vs classical integrator

-10.0 -5.0 0.0 5.0
x [mm]

10.0

7.5

-5.0

-2.5

0.0

2.5

5.0

7.5

10.0

y
 [

m
m

]

10.0

On energy

-10.0 -5.0 0.0 5.0
x [mm]

10.0

7.5

-5.0

-2.5

0.0

2.5

5.0

7.5

10.0

y
 [

m
m

]

10.0

Off energy

I The effect of using a purely classical integrator has been characterized by comparing a DA simulation
against MAD-X/PTC with the exact relativistic Hamiltonian option switched on.

I Particle are tracked for 1000 turns using the ALBA2 lattice.

I Matching results are shown in blue (unstable) and red (stable)

I Differing results are yellow (stable in MAD and unstable in UFO) and black (unstable in MAD and stable
in UFO)

∼ 5% of the stable particles are incorrectly tracked for the on-energy case
∼ 10% in the off-energy case.



32 vs 64 bit variables representation

0 20000 40000 60000 80000 100000
Turn #

8.1

8.2

8.3

8.4

8.5

8.6

A
m

p
lit

u
d
e
 [

u
m

]

Betatron motion amplitude

64 bit simulation

32 bit simulation

In a linear lattice over 100k turns

I UFO can run using 32 or 64 bit variables.

I On GPU 32 bit operations are substantially faster respect to 64 bit but less precise.

I In a 105 turns tracking the loss of symplecticity is clearly visible for the 32 bit integrator.

I Dynamic aperture simulations for electron rings require usually ∼ 103 turns.



32 vs 64 bit variables representation

10.0 7.5 5.0 2.5 0.0 2.5 5.0 7.5 10.0
x [mm]

10.0

7.5

5.0

2.5

0.0

2.5

5.0

7.5

10.0

y
 [

m
m

]

I Particle are tracked for 1000 turns using the ALBA2 lattice.

I Matching results are shown in blue (unstable) and red (stable).

I Differing results are yellow (stable in 32 and unstable in 64) and black (unstable in 32 and stable in 64).

∼ 3% of the stable particles are incorrectly tracked when switching to 32 bit.



How fast?

101 102 103 104

Parallel threads #

102

103

104

Pa
rti

cle
s /

 s

i5 Xeon P600 T4

Base clock Cores

Intel i5-8400 2.8 GHz 6

Intel Xeon Gold 6136 3.0 GHz 24

Nvidia Quadro P600 1329 MHz 384

Nvidia Tesla T4 585 MHz 2560

I Tracking is repeated for different number of particles on 4
different hardware configurations.

I UFO can run also on CPU.

I The test is repeated using 32 (solid lines) and 64 (dashed
lines) bit variables.

I Performance improvement for 32 bit variables is remarkable
for the GPUs, no difference is observed for CPUs.



UFO is not only dynamic aperture: closed orbit

101 102 103 104

Parallel threads #

102

103

104
Cl

os
ed

 o
rb

it 
/ s

i5 Xeon P600 T4

Base clock Cores

Intel i5-8400 2.8 GHz 6

Intel Xeon Gold 6136 3.0 GHz 24

Nvidia Quadro P600 1329 MHz 384

Nvidia Tesla T4 585 MHz 2560

I Closed orbit is that orbit that repeat itself after one turn.

I The tracking code is encapsulated in a simple minimization
routine to find the closed orbit.

I This could be used for fast orbit response matrix
computation.



Time dependent elements

I The OpenCL intermediate lattice representation opens for some interesting possibility

I When the OpenCL representation of the pass method is generated, the value of parameter is expanded as
a text string and embedded in the OpenCL source code

I UFO does not care if the value of a parameter is a number or a text string

I We can take advantage of this to ”inject” an expression in place of a numerical value!

For example, the strength of a quadrupole is usually defined as:

alba.QH1.k = 1.57

If we want to include a time dependent sinusoidal ripple on top of it:

alba.QH1.k = ”(1.571 + 1.0e-3 * sin((float)turn * 2.68e-4))”

30 20 10 0 10 20 30
Horizontal position [mm]

30

20

10

0

10

20

30

Ve
rti

ca
l p

os
iti

on
 [m

m
]

Ideal
300Hz tune jitter

This feature allows to simulate for example: noise, kickers, stripline, rf fields...



What’s next?

I Applying some tricks and proper programming strategies it is possible to speed up tracking substantially

I Some of the used tricks work only for electron rings and short term tracking, for example the 32 bit
approximation is very dangerous for long term tracking without damping!!!

I Nevertheless, with a clear idea of the aforementioned limits it is possible to carry out complex optics
optimization using only limited resources.

I UFO implements 4D and 5D tracking, 6D is also supported but there are no pass methods for RF or
radiation yet

I Higher order pass methods are on the ”todo” list

I UFO is my every day tool for non-linear optics optimization and allows me to compute ∼ 106 optics per
day on a ∼2500$ GPU

I UFO is not friendly, has an unusual structure and requires some effort to make proper use of it

I UFO is free software: https://github.com/mcarla/ufo

UFO is an experiment

I learn many things writing this code and probably made some questionable design decision

...what would you change?





Lattice/Beam:

Lattice(path=None)

Beam(energy=3e9, mass=electron mass,
bunch charge=1e-9, beam current=0.25,
ex=1e-9, ey=1e-9, bunch length=6e-3,

energy spread=1e-3)

Flags:
LINEAR Replace every non-linear element with a drift (useful

for optics computation)

FIVED Fixed energy simulation (5D)

EXACT Use exact Hamiltonian for tracking through drifts

KICK Replace every thick-element with a thin-element/drift
approximation using the ’Tea pot’ expansion

DOUBLE PRECISION Use double precision (64 bit) instead of single precision
(32 bit)

ACHROMATIC Suppress the chromatic aberration of quadrupoles
(useful to compute dispersion)

Physics/Simulation commands:

Track(line, flags=0, turns=1000, particles=1000, parameters=[], where=[], dp=0., context=None, options=None)

StableAperture(line, flags=0, turns=1000, particles=1000, parameters=[], dp=0., context=None, options=None)

Optics(line, where=[], periodic=True, parameters=[], flags=LINEAR | ACHROMATIC, context=None, options=None)

Elements: (Parameters follow the definition from MAD-X)

label slices length angle k1 e1 e2 dx dy knl ksl k2 k2s k3 k3s

Marker x
Drift x x x

Multipole x x x x x x
Quadrupole x x x x x x

Sbend x x x x x x x x x
Rbend x x x x x x x x x

Sextupole x x x x x x x
Octupole x x x x x x x


