

Beam Dynamics simulations for Korea-4GSR

Jaehyun Kim

oh behalf of Beam Dynamics group of the Korea-4GSR project Pohang Accelerator Laboratory (PAL)

Accelerator Toolbox Workshop, Oct2-3, 2023, ESRF

Contents

- Outline of the Korea-4GSR project
- Linear Optics
- Nonlinear Dynamics
- Commissioning simulation
- Summary

Outline of the Korea-4GSR project

4GSR Outline

- Multipurpose Synchrotron Radiation Construction Project
- Period: 2021 July to 2027 June (6yrs)
- Budget: 1.0454 Trillion KRW (≈ USD 750M)
- Land: 540,000 m / Building: 69,400 m
- Location: Ochang, Chungcheongbuk-do

Specifications

- Beam Energy: 4 GeV
- Beam Emittance: less than 100 pm·rad (CDR: 58 pm·rad)
- Circumference: 800m
- Beamlines : more than 40
- Accelerator: Gun, Injector LINAC, 4 GeV Booster
- Lattice: MBA-7 Bend Achromat

* 2 Institutions working together

- KBSI: Leading institution in charge of Building and Facility
- PAL: Partner institution in charge of Accelerator and Beamlines

<4GSR Pro	oject B	udget	Plan>	_		(Million	USD)
Years	2021	2022	2023	2024	2025	2026	2027	Sum
Machine	8	44	77	172	180	97	28	606
Site	72	72	-		-	-	-	144
Sum	80	116	77	172	180	97	28	750

Storage ring lattice parameters

- The ring is composed of 28 cells (28 identical arcs, 26 ID SS + 2 high-beta SS) - It has 2-fold geometric symmetry

Parameters	Value	
Energy (GeV)	4.0	
Circumference (m)	799.297	
Emittance (pm)	62	
Tunes (H,V)	68.18, 23.26	
Natural chromaticity (H,V)	-112.1, -85.3	
Chromaticity (corrected) (H,V)	5.8 , 3.5	
Hor. Damping partition	1.84	
Momentum compaction	$0.78 imes10^{-4}$	
Energy spread (σ_{δ})	1.26 \times 10 ⁻³	
Energy loss per turn (MeV)	1.097	
Beam current (mA)	400	
Bunch length (σ_z) (mm) (w/o HC, w/ HC)	3.66 / 14.66	
Beam current (MA) Bunch length (σ_z) (mm) (w/o HC, w/ HC) or Toolbox Workshop, Oct2-3, 202	3.66 / 14.66	

Accelerator Toolbox Workshop, Oct2-3, 2023, ESRF

Linear optics

- The ring is composed of 28 H7BA cells (28 identical arcs, 26 ID SS + 2 high-beta SS)
- Phase advance is matched ($\Delta \phi_{x,A} = \Delta \phi_{x,B}$ and $\Delta \phi_{y,A} = \Delta \phi_{y,B}$)
- Though the ring has 2-fold geometric symmetry, it has 28-cell symmetry in terms of on-momentum phase advance
- One high-beta straight is dedicated for off-axis injection

Impact of high-beta straights

RING_S : Ring with full periodic 28-cell (no high-beta straight) **RING_H** : Ring with 26 ID straights + 2 high-beta straights (28 identical arcs)

atplot(THERING,@plotRDT)

atplot(THERING,@plotWdispP)

- RING_H has larger DA as much as ~ 1.45
- RING_H has smaller MA which result in 27% decrease of Touschek lifetime

- The psedo-symmetry keeps symmetry of RDTs over the ring
- W-function is not fully periodic since chromaticities of high-beta cells are not exactly matched

Frequency map and detunings

FMA with x-y offset

Amplitude dependent tune shifts (ADTS)

Momentum dependent tune shifts (MDTS)

Commissioning simulation

Correction chain

In the simulation,

-Existence of 1-turn trajectory means that 1 turn transmission is achieved

-Existence of closed orbit means that a fixed point x exists such that x = Mx where M is one turn map (AT function 'findorbit6' is used)

Toolkit for Simulated Commissioning (SC)

https://sc.lbl.gov/

Lattice ensemble of 50 random error seeds is generated after applying the correction chain to each error seed

Error tolerances for commissioning simulation

Magnet	Misalignment (μm)	Rotation (μrad)	Strength error (%)	
	(X/Y/Z)	(Roll/Pitch/Yaw)		
LGBM	30 / 30 / 250	400 / 100 / 100	0.05	
Combined-function	20 / 20 / 250	400 / 100 / 100	0.05	
magnet	50 / 50 / 250	400 / 100 / 100	0.05	
Quadrupole	30 / 30 / 250	400 / 700 / 700	0.05	
Center bend	30 / 30 / 250	400 / 100 / 100	0.05	
Sextupole	30 / 30 / 250	400 / 700 / 700	0.05	
Octupole	30 / 30 / 250	400 / 700 / 700	0.05	
Girder	50 / 50 / 100	400 / - / -		

Error tolerance of Korea-4GSR magnet elements (rms value, 2-sigma cutoff is used for commissioning simulations)

Example of horizontal offset distribution over reference orbit

* Overall magnet offset is sum of girder offset and individual magnets mounted on the girder

Result of commissioning simulation: beta-beat

Improvement of beta-beat and dispersion-beat over each correction step

Result of commissioning simulation: equilibrium emittance

PA

Improvement of hor/ver emittance over each correction step

Design emittance is achieved after the end of correction chain

Result of commissioning simulation: corrector strength

- In AT, there are two ways to apply horizontal kick; 'Kick angle' or 'PolynomA'.
- Kick angle is simply kick angle in rad, but PolynomA is kick angle per unit length.
 'PolynomA'*(corrector length) = -'Kick angle'

Max corrector strength

RMS corrector strength

Corrector strengths after orbit correction are below mechanical limit (600 μ rad)

Result of commissioning simulation : dynamic aperture and momentum aperture

Physical aperture limit for all elements (m) (EAper): x = [-0.012 0.012]

y = [-0.009 0.009]

Momentum aperture

Touschek lifetime w/o error : 7.18 h

4.5

5

5.5

Charge set:

- a single bunch of 1 nC (or 0.375 mA)
- 400 mA = 1067×0.375 mA _

Coupling ratio (emity/emitx) = 0.10

Comparison of elegant and AT

Dynamic aperture

-Tracking for 2048 turns -RF-on/RAD-on/QE-off -Physical aperture not included

-Tracking for 2048 turns-RF-on/RAD-on/QE-off-Physical aperture not included

Summary

- Korea-4GSR is a greenfield storage ring of 4 GeV 800 m 62 pm emittance
- The H7BA ring has 2 high-beta straights for off-axis injection
- Pseudo-symmetry is met between a normal cell and a high-beta cell
- The design study and error study has been conducting mainly using AT and SC
- Realistic correction chain including orbit correction, LOCO and coupling correction is simulated and error lattice ensemble is obtained
- Ring performances based on the error lattice ensemble looks promising (beta-beat, natural emittance, dynamic aperture, Touschek lifetime)

