

Implementation of geometric transformation "patch" and associated passmethod in pyAT

Mengyu Su, Zhe Duan

IHEP, CHINA

With the help of Etienne Forest (KEK,IHEP)

PART ONE Background

PART TWO What's Patch

PART THREE Examples

PART FOUR Conclusion

- The 3D model of Accelerator
- An element is like a LEGO-block

Fig1. LEGO-block element, with reference frames for the entrance, element body, and exit.^[1]

Fig2. LEGO-blocks elements on a base (global frame).^[1]

- The 3D model of Accelerator
- What can we do when everything has been moved?
- What if a special design where the magnet is not place on the conventional position, such as Quadruple placed horizontally eccentrically to create a bending magnet which is **not** a kicker?

Fig3. The design/ideal accelerator and the real accelerator in tunnel

Fig4. A dipole with transverse field gradient by design is often realized by a quadrupole placed with a horizontal offset

- The solution of AT^[2]
- Generally, AT provides T1,T2 and R1,R2 field in most PassMethods to describe translation or rotations of the 6D coordinates; Concerning magnetic fields errors, the structures PolynomB and PolynomA provide full access to all magnetic components.
- Strong association between error (or non-conventional position) and the element
- Addresses the effect of error on phase space without changing the model of real space

• A more universal solution

The concept of 'Patch' was introduced in PTC by Etienne Forest^[1,4] It's easy to add a 'Patch' class in pyAT for python's object-oriented program

Fig5. The solution using Patch

- A new element Patch
- Translation & Rotation
- Misalignment can be also described by Patches. (Not true in PTC as we pointed out)

Fig6. Patch is a new element

Fig7. Misalignment described by Patches

- Definition of geometric part^[1,3,4,5,6]
 - In local coordinate system
 - Translation first
 - Then rotation (Z-Y-X intrinsic rotations)
 - PS. intrinsic rotations = rotated axis extrinsic rotations = static/fixed axis

Fig8. Global Affine Frame, Local Affine Frame 1 and Local Affine Frame 2

Fig9. Z-Y-X intrinsic rotations

• Euler Angle and Rotation Matrix $R = Z(\theta_z) * Y(\theta_y) * X(\theta_x)(1)$

Where

$$X(\theta_{\mathrm{x}}) = \begin{bmatrix} 1 & 0 & 0\\ 0 & \cos(\theta_{\mathrm{x}}) & -\sin(\theta_{\mathrm{x}})\\ 0 & \sin(\theta_{\mathrm{x}}) & \cos(\theta_{\mathrm{x}}) \end{bmatrix} (2.a)$$

$$Y(\theta_{y}) = \begin{bmatrix} \cos(\theta_{y}) & 0 & \sin(\theta_{y}) \\ 0 & 1 & 0 \\ -\sin(\theta_{y}) & 0 & \cos(\theta_{x}) \end{bmatrix} (2.b)$$

$$Z(\theta_z) = \begin{bmatrix} \cos(\theta_z) & -\sin(\theta_z) & 0\\ \sin(\theta_z) & \cos(\theta_z) & 0\\ 0 & 0 & 1 \end{bmatrix} (2.c)$$

properties: (use column vectors always) $T_G = R_1 T_1 (3.a)$ $R = A_{21} = A_{1G}^{-1} A_{2G} = R_1^{-1} A_{2G} (3.b)$ $R' = R_1 R R_1^{-1} (3.c)$

Fig9. Z-Y-X intrinsic rotations

• Implementation in code

Background		Examples	Conclusion			
 Implementat 	tion in code					
Datah	Pand Quadrupla	NEWmember	The variables from Element: FamName, L, etc			
Child Class	Child Class Child Class Child Class	CLASS	The variables from Geometric Transformation: Translation、Rotation			
Geometric Transformation	Element	Child Class member	The functions from Element			
Child Class Parent Class		functions	The functions from Geometric Transformation			
Affine Frame			check_need() According to the size of the patch, determine whether it needs to be added			
Fig10. 1	he inheritance of each element class		inverse() 、long_inverse() The inverse of the Patch			
ADD FUNCTIONS	find_patch_along_lattice() Add patches along the entire Lattice	Parent Class Element Determine	ispatch() whether the element is Patch			
Lattice New functions	calculate_ExitAffineFrame_along_lattice() Calculate the GT between ExitAF and EntranceAF based on the feature of element along the entire Lattice	ADD New functions Calculate the GT bet th	calculate_ExitAffineFrame() Calculate the GT between ExitAF and EntranceAF based on the feature of element			
	calculate_EntranceAffineFrame_along_lattice() Assuming that the elements in the current Lattice are tightly	FUNCTIONS find_ Calculate the	patch_from_elements() e Patch between two elements			
	connected, calculate the EntranceAffineFrame of each element based on the EntranceAffineFrame of the first element	Fig13. Patch class an	nd new functions in Element class			

Fig14. New functions in Lattice class

- Passmethod^[8,9]
- Coordinates and the Hamiltonian

Phase space coordinates:

$$\vec{r} = \begin{cases} x \\ p_x = \frac{P_x}{P_0} \\ y \\ p_y = \frac{P_y}{P_0} \\ \delta = \frac{P - P_0}{P_0} \\ l = ct - s \end{cases}$$
(4)

In Accelerator, the Hamiltonian is

$$I = \delta - \left(1 + \frac{x}{\rho}\right) \left[(1 + \delta)^2 - \left(p_x - \frac{eA_x}{p_0}\right)^2 - \left(p_y - \frac{eA_y}{p_0}\right)^2 \right]^{\frac{1}{2}} - \frac{eA_s}{p_0} (5)$$

Fig15. Frenet-Serret Curvilinear Coordinate System^[7]

PS. The **Global Frenet-Serret Coordinate System and the reference orbit** are **utterly and completely** rejected by Forest. At best, in Forest's framework and PTC, it is a local coordinate system sometimes assigned to some magnets but of **no global significance** as far as patches and even Courant-Snyder theory are concerned. According to Forest, it is an ideological poison in the writing of tracking code.

where ρ is the curvature radius of the reference orbit, A is the vector potentials and $A_x = A \cdot \hat{x}, A_y = A \cdot \hat{y}, A_s = A \cdot \hat{s}$.

- Passmethod^[8,9]
- Translation

We define the translation $T(\vec{d})$ by the Lie method:

$$T(\vec{d}) = \exp\left(:d_x p_x + d_y p_y + d_z \sqrt{(1+\delta)^2 - p_x^2 - p_y^2}:\right) (6.a)$$

$$\vec{r^f} = T(\vec{d})\vec{r}(6.b)$$

in component form,

$$\begin{aligned} x^{f} &= x - d_{x} + d_{z} \frac{p_{x}}{\sqrt{(1+\delta)^{2} - p_{x}^{2} - p_{y}^{2}}} (7.a) \\ y^{f} &= y - d_{y} + d_{z} \frac{p_{y}}{\sqrt{(1+\delta)^{2} - p_{x}^{2} - p_{y}^{2}}} (7.b) \\ l^{f} &= l + d_{z} \frac{(1+\delta)}{\sqrt{(1+\delta)^{2} - p_{x}^{2} - p_{y}^{2}}} (7.c) \\ p_{x}^{f} &= p_{x} , p_{y}^{f} = p_{y} , \delta^{f} = \delta(7.d) \end{aligned}$$

Fig16. A particle runs straight through a patch with dx and dz

- Passmethod^[8,9]
- Rotation around Z axis
- By simple geometric relation,

$$\begin{split} x^{f} &= x cos \theta_{z} + y sin \theta_{z}(8.a) \\ p_{x}^{f} &= p_{x} cos \theta_{z} + p_{y} sin \theta_{z}(8.b) \\ y^{f} &= -x sin \theta_{z} + y cos \theta_{z}(8.c) \\ p_{y}^{f} &= -p_{x} sin \theta_{z} + p_{y} cos \theta_{z}(8.d) \\ \delta^{f} &= \delta , l^{f} = l(8.e) \end{split}$$

Fig17. A particle runs straight through a patch with only rotation around z

- Passmethod^[8,9]
- Rotation around Y/X axis
- In particle's view, the rotations around X axis and around Y axis are symmetric
- We derive rotation in the ideal bend by taking appropriate limits: $\rho_c \rightarrow 0, s \rightarrow 0, \frac{s}{\rho_c} = \theta, b_0 \rightarrow 0$

Fig18. A sector bend around Y axis (a) and a Patch (b)

Background

▼ What's Patch

Examples

Conclusion

The Hamiltonian in cylindrical coordinates for the body of the sector bend(rotate $-\theta$ around Y axis) is

$$H = -\left(1 + \frac{x}{\rho_c}\right)\sqrt{(1+\delta)^2 - p_x^2 - p_y^2} + b_0 x + b_0 \frac{x^2}{2\rho_c}$$
(9)

where ρ_c is the curvature of the frame of reference, $b_0 = \frac{qB_y}{p_0}$ is the normalized field strength

$$x^{f} = \frac{\rho_{c}}{b_{0}} \left(\frac{1}{\rho_{c}} \sqrt{(1+\delta)^{2} - p_{x}^{2} - p_{y}^{2}} - \frac{dp_{x}^{f}}{ds} - b_{0} \right) (10.a)$$
$$p_{x}^{f} = p_{x} \cos\left(\frac{s}{\rho_{c}}\right) + \left[\sqrt{(1+\delta)^{2} - p_{x}^{2} - p_{y}^{2}} - b_{0}(\rho_{c} + x) \right] \sin\left(\frac{s}{\rho_{c}}\right) (10.b)$$

$$y^{f} = y + \frac{p_{y}s}{b_{0}\rho_{c}} + \frac{p_{y}}{b_{0}} \left\{ \arcsin\left(\frac{p_{x}}{\sqrt{(1+\delta)^{2} - p_{y}^{2}}}\right) - \arcsin\left(\frac{p_{x}^{f}}{\sqrt{(1+\delta)^{2} - p_{y}^{2}}}\right) \right\} (10.c)$$

$$p_y^f = p_y(10.d)$$

$$\delta^f = \delta(10.e)$$

$$l^f = l + \frac{(1+\delta)s}{b_0\rho_c} + \frac{(1+\delta)}{b_0} \left\{ \arcsin\left(\frac{p_x}{\sqrt{(1+\delta)^2 - p_y^2}}\right) - \arcsin\left(\frac{p_x^f}{\sqrt{(1+\delta)^2 - p_y^2}}\right) \right\} (10.f)$$

Background

▼ What's Patch

Under the limits $\rho_c \to 0$, $s \to 0$, $\frac{s}{\rho_c} = \theta$, $b_0 \to 0$, we can derive the expressions for the rotation:

$$\begin{aligned} x^{f} &= \frac{x}{\cos\theta \left(1 - \frac{p_{x} tan\theta}{\sqrt{(1+\delta)^{2} - p_{x}^{2} - p_{y}^{2}}}\right)} (11.a) \\ p_{x}^{f} &= p_{x} cos\theta + sin\theta \sqrt{(1+\delta)^{2} - p_{x}^{2} - p_{y}^{2}} (11.b) \\ p_{x}^{f} &= y + \frac{p_{y} x tan\theta}{\sqrt{(1+\delta)^{2} - p_{x}^{2} - p_{y}^{2}} \left(1 - \frac{p_{x} tan\theta}{\sqrt{(1+\delta)^{2} - p_{x}^{2} - p_{y}^{2}}}\right)} (11.c) \\ p_{y}^{f} &= p_{y} (3.9.d) \\ \delta^{f} &= \delta (3.9.e) \\ (1+\delta)x tan\theta \\ l^{f} &= l + \frac{(1+\delta)^{2} - p_{x}^{2} - p_{y}^{2}}{\sqrt{(1+\delta)^{2} - p_{x}^{2} - p_{y}^{2}}} \left(1 - \frac{p_{x} tan\theta}{\sqrt{(1+\delta)^{2} - p_{x}^{2} - p_{y}^{2}}}\right) (11.f) \end{aligned}$$

Furthermore, for the rotation around X axis:

$$ROT_{x}(\theta, x, p_{x}, y, p_{y}, \delta, l) = ROT_{y}(-\theta, y, p_{y}, x, p_{x}, \delta, l)(12)$$

Fig18. A sector bend around Y axis (a) and a Patch (b)

- Implementation in code
 - Write it as 'PatchPass.py' ('PatchPass.c' is also available)
 - Toss it into our 'Passmethod Repository'

Fig19. Passmethod Repository

• High Energy Photon Source (HEPS) Booster

Fig21. Measured data of the devices in the HEPS booster

Fig20. Job site

- Model for the designed booster (abbreviated as 'ideal model') use both pyAT & PTC
- Model for the measured booster (abbreviated as 'real model') use both pyAT & PTC

- Close Orbit
- RMS:

$$\sigma_{u} = \sqrt{\frac{\sum_{i=1}^{N} (u_{ipyAT} - u_{iPTC})^{2}}{N}} (u = x, y) (13)$$

Tab2. The RMS of X and Y close orbit between pyAT and PTC

σ_{χ}	1.4054E-6
σ_y	2.2867E-6

Tab1. The close orbit at s=0

		<i>x</i> (m)	p_x	y (m)	p_y	δ	l (m)
Ideal Model		8.8667E-14	-6.1296E-14	0.0000	0.0000	0.0000	0.0000
Real Model	руАТ	-2.8487E-4	2.2824E-4	4.3742E-3	-6.7828E-4	0.0000	0.0000
	PTC	-2.8234E-4	2.2754E-4	4.3758E-3	-6.7850E-4	0.0000	0.0000

- Moreover, this approach is capable to model more complicated machine layout
- A ring contains only quadruple and drift, but no bend!

Conclusion

- Moreover, this approach is capable to model more complicated machine layout
- A model like a roller coaster

Fig30. A roller coaster model (From Professor Étienne Forest), in which the usual reference orbit is absent.

• Conclusion

- Add 'Patch' into pyAT
- For misalignment, the AT with patch can do as well as PTC
- Future TODO list:
 - Based on our 'Patch' work, refine the AT_mat part
 - Submit our code to the AT official code repository for review
 - Applications for CEPC

							8				
Initial Mechanie	cal alignmen	t									
Length scale	tolerance										
6	20 to 50 um	mechanical in	stallatio	on toleran	ce of comp	onents on	quad/sext	girder - m	ain issue is	corrector	and
50	200 um	mechnical ins	echnical installation and alignment of girder to girder - need to be able to transport first beam								
200	500 um	mechnical ins	tallation	n							
1000	2 mm	mechnical installation smoothed around the ring									
10000	5 mm	Installation tolerance based on surface alignment network and GPS									

Tab3. The tolerance of alignment for a 100km ring^[10]

▼ References

- 1. Dan T. Abell. PTC Library User Guide[M]. Colorado, USA: Tech-X Corporation, 2015:3-12.
- 2. Simone Liuzzo, Error setting and correction using Accelerator Toolbox 2.0, ESRF, Grenoble, 2016
- W A H Rogers. pyAT: A Python Build of Accelerator Toolbox[A]. Gianluigi Arduini. Proceedings of IPAC2 017[C], Copenhagen, Denmark: Bella Conference Center, 2017
- 4. Étienne Forest. Locally accurate dynamical Euclidean group[J]. Phys. Rev. E, 1997,55,4,(4665)
- Laurent Deniau. The MAD-X Program (Methodical Accelerator Design) Version 5.08.01 User's Reference Manual[M]. Geneva, Switzerland: CERN,2022:1-22
- 6. David Sagan. The Bmad reference manual[M]. New York, USA: Cornell University,2022:2-28
- S Y Lee. Accelerator Physics (Fourth Edition)[M]. Hackensack, USA: World Scientific Publishing Co. Pte. Ltd.,2021:34-40
- Gennady Stupakov, Gregory Penn. Classical Mechanics and Electromagnetism in Accelerator Physics[M]. Cham, Switzerland: Springer International Publishing AG,2018:63-74
- 9. Étienne Forest. THE CORRECT LOCAL DESCRIPTION FOR TRACKING IN RINGS. Particle Accelerat ors,1994,45,65-94
- 10. Tor Raubenheimer, FCC Arc Alignment Approaches, FCC Week 2023 June 5-9, 2023

THANKS For Your Attention

Mengyu Su, Zhe Duan IHEP, CHINA

With the help of Etienne Forest (KEK,IHEP)

▼ Supplement

- High Energy Photon Source (HEPS) Booster
- β function & dispersion function

Fig25. Real Model

▼ Supplement

- High Energy Photon Source (HEPS) Booster
- β function & dispersion function
- Relative difference of β function

$$\frac{\Delta\beta}{\beta} = \frac{\beta_{pyAT} - \beta_{ideal}}{\beta_{ideal}} (4.6)$$

• Difference of dispersion function $\Delta dispersion = dispersion_{pyAT} - dispersion_{ideal}(4.7)$

