Implementation of geometric transformation "patch" and associated passmethod in pyAT

Mengyu Su, Zhe Duan
IHEP, CHINA

With the help of Etienne Forest (KEK,IHEP)
part one Background

PART two What's Patch

PART THREE Examples

PART FOUR Conclusion

- The 3D model of Accelerator

- An element is like a LEGO-block

Fig1. LEGO-block element, with reference frames for the entrance, element body, and exit. ${ }^{[1]}$

Fig2. LEGO-blocks elements on a base (global frame). ${ }^{[1]}$

- The 3D model of Accelerator

- What can we do when everything has been moved?
- What if a special design where the magnet is not place on the conventional position, such as Quadruple placed horizontally eccentrically to create a bending magnet which is not a kicker?

Fig3. The design/ideal accelerator and the real accelerator in tunnel

Fig4. A dipole with transverse field gradient by design is often realized by a quadrupole placed with a horizontal offset

- The solution of $\mathrm{AT}^{[2]}$
- Generally, AT provides T1,T2 and R1,R2 field in most PassMethods to describe translation or rotations of the 6D coordinates; Concerning magnetic fields errors, the structures PolynomB and PolynomA provide full access to all magnetic components.
- Strong association between error (or non-conventional position) and the element
- Addresses the effect of error on phase space without changing the model of real space

- A more universal solution

The concept of 'Patch' was introduced in PTC by Etienne Forest ${ }^{[1,4]}$
It's easy to add a 'Patch' class in pyAT for python's object-oriented program

Fig5. The solution using Patch

- A new element —— Patch
- Translation \& Rotation
- Misalignment can be also described by Patches. (Not true in PTC as we pointed out)

Fig7. Misalignment described by Patches

- Definition of geometric part ${ }^{[1,3,4,5,6]}$
- In local coordinate system
- Translation first
- Then rotation (Z-Y-X intrinsic rotations)
- PS. intrinsic rotations = rotated axis extrinsic rotations $=$ static/fixed axis

Fig8. Global Affine Frame, Local Affine Frame 1 and Local Affine Frame 2

Fig9. Z-Y-X intrinsic rotations

- Euler Angle and Rotation Matrix

$$
R=Z\left(\theta_{z}\right) * Y\left(\theta_{y}\right) * X\left(\theta_{\mathrm{x}}\right)(1)
$$

Where

$$
\begin{aligned}
& X\left(\theta_{\mathrm{x}}\right)=\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & \cos \left(\theta_{x}\right) & -\sin \left(\theta_{x}\right) \\
0 & \sin \left(\theta_{x}\right) & \cos \left(\theta_{x}\right)
\end{array}\right](2 . a) \\
& Y\left(\theta_{\mathrm{y}}\right)=\left[\begin{array}{ccc}
\cos \left(\theta_{y}\right) & 0 & \sin \left(\theta_{y}\right) \\
0 & 1 & 0 \\
-\sin \left(\theta_{y}\right) & 0 & \cos \left(\theta_{x}\right)
\end{array}\right](2 . b) \\
& Z\left(\theta_{\mathrm{z}}\right)=\left[\begin{array}{ccc}
\cos \left(\theta_{z}\right) & -\sin \left(\theta_{z}\right) & 0 \\
\sin \left(\theta_{z}\right) & \cos \left(\theta_{z}\right) & 0 \\
0 & 0 & 1
\end{array}\right]
\end{aligned}
$$

properties: (use column vectors always)

$$
\begin{gathered}
T_{G}=R_{1} T_{1}(3 . a) \\
R=A_{21}=A_{1 G}^{-1} A_{2 G}=R_{1}^{-1} A_{2 G}(3 . b) \\
R^{\prime}=R_{1} R R_{1}^{-1}(3 . c)
\end{gathered}
$$

Fig9. Z-Y-X intrinsic rotations

- Implementation in code

Fig12. GeometricTransformation class
Fig11. AffineFrame class

- Implementation in code

Fig13. Patch class and new functions in Element class
Fig14. New functions in Lattice class

- Passmethod ${ }^{[8,9]}$
- Coordinates and the Hamiltonian

Global Affine Frame

Fig15. Frenet-Serret Curvilinear Coordinate System ${ }^{[7]}$

PS. The Global Frenet-Serret Coordinate System and the reference orbit are utterly and completely rejected by Forest. At best, in Forest's framework and PTC, it is a local coordinate system sometimes assigned to some magnets but of no global significance as far as patches and even Courant-Snyder theory are concerned. According to Forest, it is an ideological poison in the writing of tracking code.

$$
H=\delta-\left(1+\frac{x}{\rho}\right)\left[(1+\delta)^{2}-\left(p_{x}-\frac{e A_{x}}{p_{0}}\right)^{2}-\left(p_{y}-\frac{e A_{y}}{p_{0}}\right)^{2}\right]^{\frac{1}{2}}-\frac{e A_{s}}{p_{0}}(5)
$$

Phase space coordinates:

$$
\vec{r}=\left\{\begin{array}{c}
x \\
p_{x}=\frac{P_{x}}{P_{0}} \\
y \tag{4}\\
p_{y}=\frac{P_{y}}{P_{0}} \\
\delta=\frac{P-P_{0}}{P_{0}} \\
l=c t-s
\end{array}\right.
$$

In Accelerator, the Hamiltonian is
where ρ is the curvature radius of the reference orbit, A is the vector potentials and $A_{x}=A \cdot \hat{x}, A_{y}=A \cdot \hat{y}, A_{s}=A \cdot \hat{s}$.

- Passmethod ${ }^{[8,9]}$

- Translation

We define the translation $T(\vec{d})$ by the Lie method:

$$
\begin{gathered}
T(\vec{d})=\exp \left(: d_{x} p_{x}+d_{y} p_{y}+d_{z} \sqrt{(1+\delta)^{2}-p_{x}^{2}-p_{y}^{2}}:\right) \\
\overrightarrow{r f}=T(\vec{d}) \vec{r}(6 . b)
\end{gathered}
$$

in component form,

$$
\begin{gathered}
x^{f}=x-d_{x}+d_{z} \frac{p_{x}}{\sqrt{(1+\delta)^{2}-p_{x}^{2}-p_{y}^{2}}}(7 . a) \\
y^{f}=y-d_{y}+d_{z} \frac{p_{y}}{\sqrt{(1+\delta)^{2}-p_{x}^{2}-p_{y}^{2}}}(7 . b) \\
l^{f}=l+d_{z} \frac{(1+\delta)}{\sqrt{(1+\delta)^{2}-p_{x}^{2}-p_{y}^{2}}}
\end{gathered}
$$

Fig16. A particle runs straight through a patch with $d x$ and $d z$

- Passmethod ${ }^{[8,9]}$
- Rotation around Z axis
- By simple geometric relation,

$$
\begin{gathered}
x^{f}=x \cos \theta_{z}+y \sin \theta_{z}(8 . a) \\
p_{x}^{f}=p_{x} \cos \theta_{z}+p_{y} \sin \theta_{z}(8 . b) \\
y^{f}=-x \sin \theta_{z}+y \cos \theta_{z}(8 . c) \\
p_{y}^{f}=-p_{x} \sin \theta_{z}+p_{y} \cos \theta_{z}(8 . d) \\
\delta^{f}=\delta, l^{f}=l(8 . e)
\end{gathered}
$$

Fig17. A particle runs straight through a patch with only rotation around z

- Passmethod ${ }^{[8,9]}$
- Rotation around Y / X axis
- In particle's view, the rotations around X axis and around Y axis are symmetric
- We derive rotation in the ideal bend by taking appropriate limits: $\rho_{c} \rightarrow 0, s \rightarrow 0, \frac{s}{\rho_{c}}=\theta, b_{0} \rightarrow 0$

(a)

Patch

(b)

Fig18. A sector bend around Y axis (a) and a Patch (b)

The Hamiltonian in cylindrical coordinates for the body of the sector bend(rotate $-\theta$ around Y axis) is

$$
H=-\left(1+\frac{x}{\rho_{c}}\right) \sqrt{(1+\delta)^{2}-p_{x}^{2}-p_{y}^{2}}+b_{0} x+b_{0} \frac{x^{2}}{2 \rho_{c}}
$$

where ρ_{c} is the curvature of the frame of reference, $b_{0}=\frac{q B_{y}}{p_{0}}$ is the normalized field strength

$$
\begin{gathered}
x^{f}=\frac{\rho_{c}}{b_{0}}\left(\frac{1}{\rho_{c}} \sqrt{(1+\delta)^{2}-p_{x}^{2}-p_{y}^{2}}-\frac{d p_{x}^{f}}{d s}-b_{0}\right)(10 . a) \\
p_{x}^{f}=p_{x} \cos \left(\frac{s}{\rho_{c}}\right)+\left[\sqrt{(1+\delta)^{2}-p_{x}^{2}-p_{y}^{2}}-b_{0}\left(\rho_{c}+x\right)\right] \sin \left(\frac{s}{\rho_{c}}\right)(10 . b) \\
y^{f}=y+\frac{p_{y} s}{b_{0} \rho_{c}}+\frac{p_{y}}{b_{0}}\left(\arcsin \left(\frac{p_{x}}{\sqrt{(1+\delta)^{2}-p_{y}^{2}}}\right)-\arcsin \left(\frac{p_{x}^{f}}{\sqrt{(1+\delta)^{2}-p_{y}^{2}}}\right)\right\}(10 . c) \\
l^{f}=l+\frac{(1+\delta) s}{b_{0} \rho_{c}}+\frac{(1+\delta)}{b_{0}}\left\{\begin{array}{c}
p_{y}^{f}=p_{y}(10 . d) \\
\arcsin \left(\frac{p_{x}}{\sqrt{(1+\delta)^{2}-p_{y}^{2}}}\right)-\arcsin \left(\frac{p_{x}^{f}}{\sqrt{(1+\delta)^{2}-p_{y}^{2}}}\right)
\end{array}\right)
\end{gathered}
$$

(a)

(b)

Fig18. A sector bend around Y axis (a) and a Patch (b)

Under the limits $\rho_{c} \rightarrow 0, s \rightarrow 0, \frac{s}{\rho_{c}}=\theta, b_{0} \rightarrow 0$, we can derive the expressions for the rotation:

$$
\begin{aligned}
& x^{f}=\frac{x}{\cos \theta\left(1-\frac{p_{x} \tan \theta}{\sqrt{(1+\delta)^{2}-p_{x}^{2}-p_{y}^{2}}}\right)} \text { (11. a) } \\
& p_{x}^{f}=p_{x} \cos \theta+\sin \theta \sqrt{(1+\delta)^{2}-p_{x}^{2}-p_{y}^{2}}(11 . b) \\
& y^{f}=y+\frac{p_{y} x \tan \theta}{\sqrt{(1+\delta)^{2}-p_{x}^{2}-p_{y}^{2}}\left(1-\frac{p_{x} \tan \theta}{\sqrt{(1+\delta)^{2}-p_{x}^{2}-p_{y}^{2}}}\right)} \text { (11.c) } \\
& p_{y}^{f}=p_{y}(3.9 . d) \\
& l^{f}=l+\frac{\begin{array}{c}
\delta^{f}=\delta(3.9 . e) \\
(1+\delta) x \tan \theta
\end{array}}{\sqrt{(1+\delta)^{2}-p_{x}^{2}-p_{y}^{2}}\left(1-\frac{p_{x} \tan \theta}{\sqrt{(1+\delta)^{2}-p_{x}^{2}-p_{y}^{2}}}\right)}
\end{aligned}
$$

(a)

(b)

Fig18. A sector bend around Y axis (a) and a Patch (b)

$$
R O T_{x}\left(\theta, x, p_{x}, y, p_{y}, \delta, l\right)=R O T_{y}\left(-\theta, y, p_{y}, x, p_{x}, \delta, l\right)(12)
$$

- Implementation in code
- Write it as 'PatchPass.py' ('PatchPass.c' is also available)
- Toss it into our 'Passmethod Repository'

Fig19. Passmethod Repository

- High Energy Photon Source (HEPS) Booster

Fig20. Job site

Fig21. Measured data of the devices in the HEPS booster

- Model for the designed booster (abbreviated as 'ideal model') use both pyAT \& PTC
- Model for the measured booster (abbreviated as 'real model') use both pyAT \& PTC

Fig22. The HEPS design

Fig23. Misalignment along the Lattice

- Close Orbit

- RMS:

$$
\sigma_{u}=\sqrt{\frac{\sum_{i=1}^{N}\left(u_{i p y A T}-u_{i P T C}\right)^{2}}{N}}(u=x, y)(13)
$$

Tab2. The RMS of X and Y close orbit between pyAT and PTC

σ_{x}	$1.4054 \mathrm{E}-6$
σ_{y}	$2.2867 \mathrm{E}-6$

Tab1. The close orbit at $\mathrm{s}=0$

		$x(\mathrm{~m})$	p_{x}	$y(\mathrm{~m})$	p_{y}	δ	$l(\mathrm{~m})$
Ideal Model		$8.8667 \mathrm{E}-14$	$-6.1296 \mathrm{E}-14$	0.0000	0.0000	0.0000	0.0000
Real Model	pyAT	$-2.8487 \mathrm{E}-4$	$2.2824 \mathrm{E}-4$	$4.3742 \mathrm{E}-3$	$-6.7828 \mathrm{E}-4$	0.0000	0.0000
	PTC	$-2.8234 \mathrm{E}-4$	$2.2754 \mathrm{E}-4$	$4.3758 \mathrm{E}-3$	$-6.7850 \mathrm{E}-4$	0.0000	0.0000

- Moreover, this approach is capable to model more complicated machine layout
- A ring contains only quadruple and drift, but no bend!

Fig28. A ring that contains only quadruple and drift
Fig29. An arbitrary part of the ring: Drift- Quadruple-Drift-Quadruple-Drift

- Moreover, this approach is capable to model more complicated machine layout
- A model like a roller coaster

Fig30. A roller coaster model (From Professor Étienne Forest), in which the usual reference orbit is absent.

- Conclusion

- Add 'Patch' into pyAT

- For misalignment, the AT with patch can do as well as PTC
- Future TODO list:
- Based on our 'Patch' work, refine the AT_mat part
- Submit our code to the AT official code repository for review
- Applications for CEPC

Tab3. The tolerance of alignment for a 100 km ring ${ }^{[10]}$

1. Dan T. Abell. PTC Library User Guide[M]. Colorado, USA: Tech-X Corporation, 2015:3-12.
2. Simone Liuzzo, Error setting and correction using Accelerator Toolbox 2.0, ESRF, Grenoble, 2016
3. W A H Rogers. pyAT: A Python Build of Accelerator Toolbox[A]. Gianluigi Arduini. Proceedings of IPAC2 017[C], Copenhagen, Denmark: Bella Conference Center, 2017
4. Étienne Forest. Locally accurate dynamical Euclidean group[J]. Phys. Rev. E, 1997,55,4,(4665)
5. Laurent Deniau. The MAD-X Program (Methodical Accelerator Design) Version 5.08.01 User's Reference Manual[M]. Geneva, Switzerland: CERN,2022:1-22
6. David Sagan. The Bmad reference manual[M]. New York, USA: Cornell University,2022:2-28
7. S Y Lee. Accelerator Physics (Fourth Edition)[M]. Hackensack, USA: World Scientific Publishing Co. Pte. Ltd.,2021:34-40
8. Gennady Stupakov, Gregory Penn. Classical Mechanics and Electromagnetism in Accelerator Physics[M]. Cham, Switzerland: Springer International Publishing AG,2018:63-74
9. Étienne Forest. THE CORRECT LOCAL DESCRIPTION FOR TRACKING IN RINGS. Particle Accelerat ors,1994,45,65-94
10. Tor Raubenheimer, FCC Arc Alignment Approaches, FCC Week 2023 June 5-9, 2023

THANKS
 For Your Attention

Mengyu Su, Zhe Duan
IHEP, CHINA

With the help of Etienne Forest (KEK,IHEP)

Supplement

- High Energy Photon Source (HEPS) Booster
- β function $\&$ dispersion function

Fig24. Ideal Model

Fig25. Real Model

- High Energy Photon Source (HEPS) Booster
- β function $\&$ dispersion function
- Relative difference of β function $\frac{\Delta \beta}{\beta}=\frac{\beta_{\text {pyAT }}-\beta_{\text {ideal }}}{\beta_{\text {ideal }}}$ (4.6)
- Difference of dispersion function $\quad \Delta$ dispersion $=$ dispersion $_{\text {pyAT }}-$ dispersion $_{\text {ideal }}(4.7)$

Fig26. Relative difference of β function

Fig27. Difference of dispersion function

