
1

Frequency Maps and
IDs in AT and pyAT

Oscar Blanco
Previously at the synchrotron SOLEIL (France)
Now at the synchrotron ALBA (Spain)

October the 2nd, 2023

2 2

Summarized in one slide
Example in python using the SOLEIL lattice and
an Insertion Device from SOLEIL

load a ring and insert an Insertion Device
#u20 = at.InsertionDeviceKickMap('u20',10,
"u20_g45mm_kicks_2022nov10.txt",
2.75)
exec(open(“example_InsertionDevice.py”).read())

#frequency map
newlattice.disable_6d();
fmadata = at.fmap_parallel_track(newlattice,

coords=[-10,10,-10,10],
steps = [200,200],
turns=1024, verbose=False);

fmadata=numpy.array(fmadata[0])

plot
from matplotlib import pyplot as plt
plt.scatter(fmadata[:,2],fmadata[:,3],c=fmadata[:,6])
plt.xlabel(r'ν_x')
plt.ylabel(r'ν_y')
plt.show()

plt.scatter(fmadata[:,2],fmadata[:,3],c=fmadata[:,6])
plt.xlabel(r'ν_x')
plt.ylabel(r'ν_y')
plt.show()

w/o ID with ID, no correction

3 3

Frequency Maps and IDs in AT and pyAT

- Frequency Maps
 - Reminder of the mathematical origins
 - History according to github
 - Functions in pyat and AT matlab
 - Parallelization

- Insertion Devices
 - Reminder of the analytical modelling
 - History according to github
 - Functions in pyat and AT matlab (create, insert, get beta-beat)
 - Lattice files In/Out possiblities

- Conclusions

4 4

Frequency Maps

5 5

Frequency Maps

- Jacques Laskar, “Frequency Analysis and Particle Accelerators”.
https://accelconf.web.cern.ch/p03/PAPERS/WOAB001.PDF
https://cds.cern.ch/record/301630/files/p183.pdf

The main purpose is to calculate the tune variation Δν along time (a number of particle cycles).
Useful to identify stable, semi-stable, unstable regions in the phase space.
Mostly used to get resonances, and diffusion maps (Δν vs x-y).

https://accelconf.web.cern.ch/p03/PAPERS/WOAB001.PDF
https://cds.cern.ch/record/301630/files/p183.pdf

6 6

Frequency Maps history from github

When Who What
<1998 J. Laskar Fortran implementation
1998-1999 M. Gastineau C implementation
2003 L. Nadolski First implementation at SOLEIL
2012 L. Farvaque Multiple contributions
2017 L. Farvaque Moves folder to atphysics
2023 P. Schreiber Bug fix
2023 O. Blanco Python implementation

When Where
2003 at/atmat/pubtools/nafflib/*
2017 at/atmat/atphysics/nafflib/*
2023 at/atmat/atphysics/nafflib/nafflib.c and calcnaff.m
2023 at/pyat/at/physics/frequency_maps.py

A short history of modifications taken from the github repo :

7 7

Frequency Maps functions

y

x

(-8,-3)

(-8, 3)

(8,-3)

(8, 3)

200 points

50
 p

oi
nt

s

MATLAB Python

Parallelization *parfor using
parallel pool

Tracking with
patpass

Freq.Library nafflib in c harmonic_analysis

Basic idea
Each particle on the grid is tracked over 2 x nturns.
- First nturns are analyzed to obtain the frequency.
- Second nturns are analyzed to obtain again a freq.
- We get the difference between the two frequencies

python (- parallel tracking,
- frequency analys IS NOT parallelized)
ring.disable_6d();
[xy_tune_nudiff_array, plosses_array] = \
 at.fmap_parallel_track(ring,
 coords=[-8,8,-3,3], # [-x,+x,-y,+y] in mm
 steps=[200,50], # x by y points grid
 turns= 512, # tracking turns
 scale='linear', # equally spaced
 lossmap=True, # if losses are needed
 verbose=False) # print execution percentage

% matlab (parfor allows to do:
% - parallel tracking
% - parallel frequency analysis)
There is no generic function.
Libraries and examples are available in the nafflib folder.
I believe every laboratory implements its own routine.
*I got to know the fmap implementation at soleil (fmap)
from which I based the python implementation.

8 8

Frequency Maps Parallelization
y

x

(-8,-3)

(-8, 3)

(8,-3)

(8, 3)

1st call to patpass/parfor →
2 st call to patpass/parfor →

n st call to patpass/parfor →

...

python
1) grid
2) take one horizontal slice :
 - parallel tracking (patpass)
3) freq. Analysis (not in parallel)
4) save
5) repeat from 2) for all slices

% matlab
% using the Parallel Computing Toolbox
1) grid, and memory allocation
2) inside parfor
 - track one slice
 - do freq. analysis (calcnaff) of one slice
 - save
3) repeat from 2) for all slices

COMMENTS : it works but it could be improved
- Parallelize the python frequency analysis
- Track all particles at the same time with patpass/parallel pool (supposing there is enough memory space)

Memory ≈ nx.ny.(2.nturns).6D.nbytes + FrequencyAnalysisMemory
- Track custom arrays (diagonals, concentric ellypses, any given array, …)
- Include other grids (radial uniform, radial log, etc.)

9 9

Insertion Devices (IDs) in AT and pyAT

10 10

Insertion Devices (IDs) in AT and pyAT
To first order in α, the undulator has no effect on the beam trajectory. To second order there is a kick.
- Pascal Elleaume, “A new approach to the Electron Beam Dynamics in Undulators and Wigglers”.
Proceedings of the 1992 European Particle Accelerator Conference.
https://accelconf.web.cern.ch/e92/PDF/EPAC1992_0661.PDF

https://accelconf.web.cern.ch/e92/PDF/EPAC1992_0661.PDF

11 11

Insertion Devices (IDs) history from github

When Who What
2007 Muñoz, Safranek First implementation
2008 Zeus Marti Implementation of the IdTable pass method
2012 Boaz Nash Update
2012-~ L. Farvaque Multiple contributions
2019 N. Carmignani Bug fix
2023 O. Blanco Python element compatible with matlab element

When What
2007 at/atmat/pubtools/create_elems/idtable_dat.m
2007 at/at/integrators/IdTablePass.c
2023 at/pyat/at/lattice/idtable_element.py

A short history of modifications taken from the github repo :

12 12

ID file format

Simplified template of the Insertion Device file format :

 #comment in line 1
 #comment in line 2
 Length_in_m
 #comment in line 4
 Number of points in horizontal plane :nh
 #comment in line 6
 Number of points in vertical plane :nv
 #comment in line 8
 START
 pos_point1h pos_point2h ... pos_pointnh
 pos_point1v
 ... horizontal kick_map(nv,nh)
 pos_pointnv
 START
 pos_point1h pos_point2h ... pos_pointnh
 pos_point1v
 ... vertical kick_map(nv,nh)
 pos_pointnv
 (End Of Line)

A pass method was created in AT to integrate over ‘s’ a field that depends on the particle horizontal ‘x’,
and vertical (‘z’ in the article by Pascal Elleaume). This is called IdTablePass.

It requires an input file with two tables :
- an x-z table for the horizontal kick (first START)
- and another x-z table for the vertical kick (second START)

13 13

Insertion Devices (IDs) creation and insertion

HOW TO CREATE THE ELEMENT
% matlab (name, integration slices along s, inputfile, normalization energy GeV, passmethod)
u20 = atidtable_dat('u20', 10, 'u20_g45mm_kicks_2022nov10.txt', 2.75, 'IdTablePass');
python (name, integration slices along s, inputfile, normalization energy GeV)
u20 = at.InsertionDeviceKickMap('u20',10,"u20_g45mm_kicks_2022nov10.txt", 2.75)

HOW TO INSERT THE ELEMENT INTO A LATTICE (example)
I would like to insert myID between the drifts hdr1 and hdr2 :
% matlab
NEWRING{hdr1_index}.Length = NEWRING{hdr1_index}.Length + NEWRING{hdr2_index}.Length;
NEWRING(hdr2_index) = [];
NEWRING = atinsertelems(NEWRING,hdr1_index,0.5,u20);
IDindex = hdr2_index;
python
dummyelem = newlattice[hdr2_index].deepcopy()
newlattice.insert(hdr2_index, dummyelem) # insert a dummy element before hdr2
newlattice[hdr2_index] = u20.deepcopy() # overwrite dummy element with ID
IDindex = hdr2_index
newlattice[IDindex - 1].Length = newlattice[IDindex - 1].Length - u20.Length/2;
newlattice[IDindex + 1].Length = newlattice[IDindex + 1].Length - u20.Length/2;

myID

hdr1 hdr2

14 14

Insertion Devices (IDs) optics perturbation

HOW TO Calculate the Beta-Beat

Remember that your original ring, and the ring with the ID are different, they have different number of elements and
elements’ length. Therefore, comparing the optics of your original lattice and the new one could be misleading.

Here is my workaround:
- calculate the optics with the ID
- deactivate the ID by changing the pass method
- calculate again the optics
- substract the two optics as needed

In order to deactivate/activate the ID choose the pass method
matlab
newlattice{IDindex}.PassMethod = 'DriftPass'
newlattice{IDindex}.PassMethod = 'IdTablePass'
python
newlattice[IDindex].PassMethod = 'DriftPass'
newlattice[IDindex].PassMethod = 'IdTablePass'

In python you could also use :
newlattice[IDindex].set_DriftPass()
newlattice[IDindex].set_IdTablePass()

myID

hdr1 hdr2

myID

hdr1 hdr2

15 15

Insertion Devices (IDs) files In/Out
From an IDfile to pyat, AT matlab, .m and .mat files :

Warning : currently there is no way to recover the IDfile from the model

16 16

CONCLUSIONS

The work here presented wrt frequency maps and Insertion Devices is an adaptation to python from already
known models in Fortran, C and matlab with more than 10 years history.

These two tools (ID modelling, and frequency analysis) complement the optics/beam dynamics tools already
existing in AT. They might open the road for further use of pyat.

BEYOND THIS PRESENTATION
There is room for further improvements, and among the multiple possibilities, I could mention :

- frequency analysis full parallelization
 - frequency analysis flexible/custom grids

- Insertion Devices 3D (x,y,s) tracking ?
- Insertion Devices including radiation effects ?
- Insertion Devices Additional tables for errors ?
- S.I. units always ?

There is no defined path, I have developed these functionalities as the need rised.

17 17

EXTRA SLIDES

18 18

An example of a frequency map
Different frequency analysis libraries lead to sligthly better/worse speed/precision. In pyat we adopted the
library harmonic_analysis derived from Jaime Coelho de Portugal (JcdP) to gain in speed.
Further discussion is available at https://github.com/atcollab/at/pull/556
Similar effect is visible wrt matlab calcnaff library

https://github.com/atcollab/at/pull/556

19 19

Recent development info :

IDs
- Create element, insert and calculate the beta-beat https://github.com/atcollab/at/pull/558
- Read and Write https://github.com/atcollab/at/pull/597

Frequency Maps
- Discussion on the speed and precision : https://github.com/atcollab/at/pull/556

https://github.com/atcollab/at/pull/558
https://github.com/atcollab/at/pull/597
https://github.com/atcollab/at/pull/556

20 20

example_InsertionDevice.py
$ cat example_InsertionDevice.py
example: insert ID in the ring
orblancog
2023jul15 Including read/write tests
2023may24 Revisiting the file saving
2023feb05 Initial release

print('\n\nExample to insert an Insertion Device in a ring')
print(' and get the tune variation\n\n')

import at
load ID file
u20 = at.InsertionDeviceKickMap('u20',
 10,
 "u20_g45mm_kicks_2022nov10.txt",
 2.75
)

load lattice
lattice = at.load_m('lat_soleil.m')
_, beamdata_lat, _ = at.get_optics(lattice,get_chrom=True)
print(f'Parameters of the lattice without ID')
print(f'tune : {beamdata_lat.tune}')
print(f'orbit : {at.find_orbit(lattice)}')

choose a drift and get the index
dr_name = 'SDAC1'
refDRIFT = at.get_cells(lattice, 'FamName', dr_name)
get index of drift
dr_index = at.get_refpts(lattice,dr_name)
choose next element downstream the desired location of the ID
insertIDindex = dr_index[5]

create a new lattice where we will insert the InsertionDevice
newlattice = lattice.deepcopy()
2023feb05: insert function does not work, it removes the Energy property
newlattice.insert(insertIDindex+1, u20)
work around because at.lattice.insert does not copy the Energy property
dummyelem = newlattice[insertIDindex].deepcopy()
newlattice.insert(insertIDindex, dummyelem)
newlattice[insertIDindex] = u20.deepcopy()
substract half length on each side
newlattice[insertIDindex - 1].Length = newlattice[insertIDindex - 1].Length - u20.Length/2;
newlattice[insertIDindex + 1].Length = newlattice[insertIDindex + 1].Length - u20.Length/2;

choose pass method, for a quick test
#newlattice[insertIDindex].PassMethod = 'DriftPass'
#newlattice[insertIDindex].PassMethod = 'IdTablePass'

… continue

[_,beamdata_newlat,_] = at.get_optics(newlattice, get_chrom=True)
print(f'Parameters of the lattice with ID')
print(f'tune w ID: {beamdata_newlat.tune}')
print(f'orbit w ID: {at.find_orbit(newlattice)}')

expected difference : 0.0000 0.0044 -0.0000 (from matlab)
print(f' ... Tune variation ...')
print(f'expected difference : 0.0000 0.0044 -0.0000 (from matlab)')
print(f'calculated difference:{beamdata_newlat.tune - beamdata_lat.tune} (from python)')

print(u20)

	Status of Beamline construction projects
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20

