Accelerator Toolbox passmethods for more accurate modeling

10/2/2023

Accelerator Toolbox Workshop (at ESRF)

(Presented remotely)

Xiaobiao Huang

SLAC National Accelerator Laboratory

Outline

- A code-comparison effort in 2009
- Original AT passmethods for magnet modeling
- Quadrupole passmethods with fringe field
- Dipole passmethods
 - Dipole w/ straight geometry
- Comparison w/ Elegant See Borland, Sun, and Huang, PRAB 22, 114601 (2019)
- Summary

See an earlier talk on the topic by X. Huang at Future Light Source 2012 (on March 5, 2012) at https://www.jlab.org/conferences/FLS2012/talks/Mon/Huang_lattice_modelling.pptx This talk focus on progress since then.

An earlier code comparison in 2008-2009

- A joint effort involving several codes and spanning continents
- D. Einfeld presented findings at the 2nd NLBD workshop (Nov. 2009)

Linear Parameters for the Lattice ALBA

There were large				Calcu	<mark>lation fo</mark> i	the Lattic	ce ALBA			
discrepancies			MAD	Tracy II	BETA	ELEG.		AT	OPA	Accel.
between the codes.	Parameter Energy Circumference	Unit GeV m	3 268.8003	3.000 268.8003	3 268.8000	3 268.8000	3 268.8000	3 268.8003	3 268.8000	3 268.8003
	Horizontal Tune Q(x) Vertical Tune (Qy) Beta_x (β(x)) Beta_y (β(y))		18.1790 8.3720 11.1986 5.9288	18.1789 8.3715 11.1980 5.9270	18.1791 8.3710 11.1950 5.9250	18.1790 8.3379 11.1967 5.7711	18.1790 8.3720 11.1960 5.9290	18.1790 8.3720 11.1966 5.9287	18.1790 8.3720 11.1970 5.9290	18.1790 8.3720 11.1970 5.9288
	HorizNaturChromaticity §(x) VerticNaturChromaticity §(y)		-39.4893 -28.0677	-39.4976 -28.1603	-39.4400 -28.7700	-39.4433 -29.4241	-39.4433 -28.7558	-39.4155 -28.7372	-39.6480 -26.8830	-39.6481 -26.8831
	Momentum Compaction Factor (α) Energy Spread (δΕ/Ε) Natural emittance	nm*rad	8.8230E-04 1.0489E-03 4.4874	8.7580E-04 1.0600E-03 4.4880	8.8290E-04 1.0500E-03 4.48922	8.8293E-04 1.0515E-03 4.4571	8.8230E-04 1.0500E-03 4.4600	8.8316E-04 1.0512E-03 4.4545	8.8300E-04 1.0490E-03 4.4880	8.8229E-04 1.0515E-03 4.4570
	HorizDamping-Time (τ(x)) VertDamping-Time (τ(y)) LongDamping-Time (τ(s))	msec msec msec	4.0826 5.2908 3.1048	4.0830 5.2910 3.1040	4.0810 5.2880 3.1030	4.0550 5.2908 3.1210	4.0551 5.2910 3.1211	4.0531 5.2887 3.1199	4.0840 5.2910 3.1050	4.0550 5.2908 3.1210
Slide 10 of D. Einfeld's presentation at the 2 nd	Energy Loss per Tum (U(0)) HorizPartition Number (J(x)) VertPartition Number (J(y)) LongPartition Number (J(s))	MeV	1.0168 1.2959 1.0000 1.7041	1.0168 1.2960 1.0000 1.7040	1.0170 1.29576 1.00000 1.70424	1.0168 1.3048 1.0000 1.6952	1.0168 1.3048 1.0000 1.6952	1.0172 1.3048 1.0000 1.6952	1.0167 1.2958 1.0000 1.7042	1.0156 1.3048 1.0000 1.6952
NLBD workshop (Diamond)	SynchrIntegrat (I1) SynchrIntegrat (I2) SynchrIntegrat (I3) SynchrIntegrat (I4)		0.2375 0.8916 0.1265 -0.2717	0.2354 0.8916 0.1265	0.2373 0.8916 0.1265 -0.2637	0.2373 0.8916 0.1265 -0.2717	0.2373 0.8916 0.1265 -0.2717	0.2374 0.8916 0.1265 <mark>-0.2718</mark>	0.2373 0.8916 0.1265 -0.2637	0.2373 0.8916 0.1265 -0.2717
	SynchrIntegrat (15)		3.9356E-04		3.9256E-04	3.9258E-04	3.9258E-04	3.9258E-04	3.9250E-04	3.9258E-04

X. Huang (SLAC), AT Workshop (10/2/2023)

Original AT passmethods for magnets

- Linear passmethods w/ exact momentum deviation modeling
 - BendLinearPass
 - QuadLinearPass
 - CorrectorPass

- These are basically transfer matrix, but convert to x' and y' coordinates first and handle pass length properly.
- Fourth-order integrators
 - BndMPoleSymplectic4Pass -
 - for multipoles on circular reference orbit
 - StrMPoleSymplectic4Pass
 - for all straight multipoles, including quadrupole
- Thin-lens multipoles
 - ThinMPolePass
 - thin-lens multipoles

X. Huang (SLAC), AT Workshop (10/2/2023)

Quadrupole fringe field modeling

Quadrupole fringe field was known to cause linear and nonlinear optics perturbation

A general Hamiltonian (including longitudinal field variation) can be derived using a proper magnetic field expansion⁽¹⁾.

$$H(s) = \frac{1}{2}(P_x^2 + P_y^2) + \frac{1}{2}k(s)(x^2 - y^2) - \frac{1}{4}k'(s)(x^2 - y^2)(xP_x + yP_y) - \frac{1}{12}k''(s)(x^4 - y^4) + O(X^6)$$
 J. Irwin, C.X. Wang

The leading correction for a hard-edge model is from the last two terms, which are nonlinear⁽²⁾.

The leading correction term from a soft fringe model is linear⁽³⁾.

 $H(s) = H_0(s) + \tilde{H}(s)$ A perturbation approach

The soft fringe results in contraction and expansion at the edges.

 $f_2 = \frac{I_1}{2}(xP_x - yP_y)$ $I_1 = \int_{-\infty}^{\infty} \tilde{k}(s)(s - s_0)ds$ leading contribution

matrix diag $(e^{I_1}, e^{-I_1}, e^{-I_1}, e^{I_1})$

For a symmetric guadrupole, the entrance edge has a reversed sign for I₁

(1) El-Kareh; Forest; Bassetti & Biscari

(2) Lee-Whiting, Forest & Milutinovic, Irwin & Wang, Zimmermann

X. Huang (SLAC), AT Workshop (10/2/2023) (3) Irwin & Wang (PAC'95), D. Zhou (IPAC10).

QuadLinearFPass – quadrupole passmethod w/ linear and nonlinear fringe field effect

- Was introduced in 2011
- For linear effect, apply the scaling transformation at edges
 - Use Irwin-Wang result on PAC'95
- Modeling of nonlinear effect

The generating function for the correction map (exit edge)

$$f_4 = \frac{1}{12(1+\delta)}k_0(x^3P_x + 3xy^2P_x - y^3P_y - 3x^2yP_y) - \frac{1}{6(1+\delta)}k_{skew}(x^3P_y + y^3P_x)$$

Forest & Milutinovic

The function for the entrance edge has an opposite sign.

The skew quadrupole part corresponds to a 'kick map'! A normal quadrupole can thus be modeled by a pair of pi/4 rotation and a kick map.

This is the basis for the nonlinear part of the new AT quadrupole pass method.

New quadrupole fringe field passmethods (2018)

- Needed for comparison with Elegant
- New passmethod StrMPoleSymplectic4NPass
 - Also include exact drift in this passmethod
 - Nonlinear quadrupole fringe effect is modeled the same as in QuadLinearFP
- Differences from 2011 work adopting D. Zhou's more detailed linear transformation

$$\begin{split} f_{2}^{-} &= -\frac{1}{2} I_{0}^{-} \left(x^{2} - y^{2}\right) - I_{1}^{-} \left(xp_{x} - yp_{y}\right) & I_{0}^{-} = \int_{s_{1}}^{s_{0}} \tilde{K}(s) ds, \qquad I_{1}^{-} = \int_{s_{1}}^{s_{0}} \tilde{K}(s) (s - s_{0}) ds \\ &- \frac{1}{2} I_{2}^{-} \left(p_{x}^{2} - p_{y}^{2}\right) + \frac{1}{2} K_{0} I_{2}^{-} \left(x^{2} + y^{2}\right) & I_{0}^{-} = \int_{s_{1}}^{s_{0}} \tilde{K}(s) ds, \qquad I_{1}^{-} = \int_{s_{1}}^{s_{0}} \tilde{K}(s) (s - s_{0})^{3} ds \\ &+ \frac{2}{3} K_{0} I_{3}^{-} \left(xp_{x} - yp_{y}\right) + \frac{1}{2} \Lambda_{2}^{-} \left(x^{2} + y^{2}\right) & I_{0}^{-} = \int_{s_{0}}^{s_{2}} \tilde{K}(s) ds, \qquad I_{1}^{+} = \int_{s_{0}}^{s_{2}} \tilde{K}(s) (s - s_{0})^{3} ds \\ &I_{2}^{+} = \int_{s_{0}}^{s_{2}} \tilde{K}(s) (s - s_{0})^{2} ds, \qquad I_{1}^{+} = \int_{s_{0}}^{s_{2}} \tilde{K}(s) (s - s_{0})^{3} ds \\ &I_{2}^{+} = \int_{s_{0}}^{s_{2}} \tilde{K}(s) (s - s_{0})^{2} ds, \qquad I_{3}^{+} = \int_{s_{0}}^{s_{2}} \tilde{K}(s) (s - s_{0})^{3} ds \\ &\Lambda_{2}^{-} = \int_{s_{1}}^{s_{0}} ds \int_{s}^{s_{0}} ds' \tilde{K}(s) \tilde{K}(s') (s' - s) \\ &\Lambda_{2}^{+} = \int_{s_{0}}^{s_{2}} ds \int_{s}^{s_{0}} ds' \tilde{K}(s) \tilde{K}(s') (s' - s) \\ &\Lambda_{2}^{+} = \int_{s_{0}}^{s_{2}} ds \int_{s}^{s_{2}} ds' \tilde{K}(s) \tilde{K}(s') (s' - s) \\ &\Lambda_{2}^{+} = \int_{s_{0}}^{s_{2}} ds \int_{s}^{s_{2}} ds' \tilde{K}(s) \tilde{K}(s') (s' - s) \\ &\Lambda_{2}^{+} = \int_{s_{0}}^{s_{2}} ds \int_{s}^{s_{2}} ds' \tilde{K}(s) \tilde{K}(s') (s' - s) \\ &\Lambda_{2}^{+} = \int_{s_{0}}^{s_{2}} ds \int_{s}^{s_{2}} ds' \tilde{K}(s) \tilde{K}(s') (s' - s) \\ &\Lambda_{2}^{+} = \int_{s_{0}}^{s_{2}} ds \int_{s}^{s_{2}} ds' \tilde{K}(s) \tilde{K}(s') (s' - s) \\ &\Lambda_{2}^{+} = \int_{s_{0}}^{s_{2}} ds \int_{s}^{s_{2}} ds' \tilde{K}(s) \tilde{K}(s') (s' - s) \\ &\Lambda_{2}^{+} = \int_{s_{0}}^{s_{2}} ds \int_{s}^{s_{2}} ds' \tilde{K}(s) \tilde{K}(s') (s' - s) \\ &\Lambda_{2}^{+} = \int_{s_{0}}^{s_{2}} ds \int_{s}^{s_{2}} ds' \tilde{K}(s) \tilde{K}(s') (s' - s) \\ &\Lambda_{2}^{+} = \int_{s_{0}}^{s_{2}} ds \int_{s}^{s_{2}} ds' \tilde{K}(s) \tilde{K}(s') (s' - s) \\ &\Lambda_{2}^{+} = \int_{s_{0}}^{s_{2}} ds \int_{s}^{s_{2}} ds' \tilde{K}(s) \tilde{K}(s') (s' - s) \\ &\Lambda_{2}^{+} = \int_{s_{0}}^{s_{2}} ds \int_{s}^{s_{2}} ds' \tilde{K}(s) \tilde{K}(s') (s' - s) \\ &\Lambda_{2}^{+} = \int_{s_{0}}^{s_{2}} ds' \tilde{K}(s) \tilde{K}(s') (s' - s) \\ &\Lambda_{2}^{+} = \int_{s_{0}}^{s_{0}} ds' \tilde{K}(s) \tilde{K}(s') (s' - s) \\ &\Lambda_{2}^{+} = \int_{s_{0}}^{s_{0}} ds' \tilde{K}(s) \tilde{K}(s') (s' - s) \\ &\Lambda_{$$

See D. Zhou, et al, IPAC'10 for more details

X. Huang (SLAC), AT Workshop (10/2/2023)

Test of quadrupole fringe passmethod

- A model with a simple profile is used as a test
 - For which the fringe integrals can be calculated analytically

In comparison to the slicing model w/ 16000 slices (slice length = 0.1 mm) (using StrMPoleSymplectic4NPass)

AT - Line approx

 -4.5991e-07,
 2.7325e-06,
 0.0000e+00,
 0.00000e+00,
 0.0000e+00,
 0.0000e+00,</td

Compared to QuadLinearFPass

• The old version seems to be a good approximation, too To use QuadLinearFPass, set $I_{1a} = I_{1b} = I_{1p} + I_{1m}$.

-2.364058e-04,	1.782653e-04,	0.000000e+00,	0.000000e+00,	0.000000e+00,	0.000000e+00
-1.332283e-04,	-2.484126e-04,	0.000000e+00,	0.000000e+00,	0.000000e+00,	0.000000e+00
0.000000e+00,	0.000000e+00,	-3.575765e-04,	-5.164855e-04,	0.000000e+00,	0.000000e+00
0.000000e+00,	0.000000e+00,	-3.766251e-04,	-3.232857e-04,	0.000000e+00,	0.000000e+00
0.000000e+00,	0.000000e+00,	0.000000e+00,	0.000000e+00,	0.000000e+00,	0.000000e+00
0.000000e+00,	0.000000e+00,	0.000000e+00,	0.000000e+00,	0.000000e+00,	0.000000e+00

This is equivalent to use the new method but only with 11p and 11m

difference w/ StrMPoleSymplectic4NPass but only use Ilp and Ilm

-2.424098e-04,	1.782863e-04,	0.000000e+00,	0.000000e+00,	0.000000e+00,	0.000000e+00
-1.332083e-04,	-2.424098e-04,	0.000000e+00,	0.000000e+00,	0.000000e+00,	0.000000e+00
0.000000e+00,	0.000000e+00,	-3.404302e-04,	-5.165137e-04,	0.000000e+00,	0.000000e+00
0.000000e+00,	0.000000e+00,	-3.765944e-04,	-3.404302e-04,	0.000000e+00,	0.000000e+00
0.000000e+00,	0.000000e+00,	0.000000e+00,	0.000000e+00,	0.000000e+00,	0.000000e+00
0.000000e+00,	0.000000e+00,	0.000000e+00,	0.000000e+00,	0.000000e+00,	0.000000e+00

- The linear effect in the Irwin-Wang model is dominant.
- D. Zhou's refined linear fringe model does improve the accuracy.

Usage of the passmethod

For the test case above

```
K = 1;
s0 = 0.5;
Delta = 0.1;
QF.FamName = 'QF';
QF.Length = 2*s0;
QF.K =K;
QF.PolynomB = zeros(1,4);
QF.PolynomA = zeros(1,4);
QF.PolynomB(2) = QF.K;
QF.MaxOrder = 3;
QF.NumIntSteps = 100;
QF.PassMethod = 'StrMPoleSymplectic4NPass';
QF.Iminus = [-1/30, 1/900, -1./18000 1./300000, 1./67500.];
QF.Iplus = [1./30., 1./450., 1./4500., 1./37500., 1./33750.];
QF.QuadEdgeFlag = [3 3];
```

Modeling a straight-geometry dipole

- The SPEAR3 dipole has a straight body (not a sector dipole)
 - Many other light source rings are the same

 $B_x = B_1 y \cos \theta(s), \quad B_s = -B_1 y \sin \theta(s),$ $B_y = (B_0 + B_1 X_{00}) - B_1 \rho (1 - \cos \theta(s)) + B_1 x \cos \theta(s).$

The bending and focusing field components vary with distance, plus there is a longitudinal field component.

 A 3D magnetic field model and a field passmethod were used to model the SPEAR3 dipole
 X. Huang, et al. IPAC'10

$$A_X = \frac{X^2 - Y^2}{4} B_0 \Theta'_0(Z), \quad A_Y = \frac{XY}{2} B_0 \Theta'_0(Z),$$

$$A_Z = -B_0 X \left(\Theta_0(Z) - \frac{1}{8} \Theta''_0(Z) (X^2 + Y^2) \right), \quad (1)$$

Dipole field w/ fringe (similarly for quadrupole, sextupole components)

The model predicts a 0.1% energy error which was later confirmed experimentally (K.P. Wootton, et al, Phys. Rev. ST Accel. Beams, 16, 074001 (2013)) But it can't be used for long-term tracking!

X. Huang (SLAC), AT Workshop (10/2/2023)

The CCBEND approach in Elegant

- Other approaches were tried to model such dipoles
 - E.g., to use Lie map thin-lens element to account for the differences with the sector dipole model (obtaining such map from Taylor map which is obtained by fitting tracking results, using a field model)
 Y. Li, X. Huang, IPAC'12

But the CCBEND in Elegant gives a good solution

- Coordinate rotation at the entrance and exit
- Symplectic integration through dipole body, including dipole component
 - This is similar to the StrMPoleSymlectic4Pass

This solution was described in E. Forest's book, 'Beam dynamics – a new attitude and framework' (1998), p. 355.

Implementation in AT

Implemented in the new passmethod 'BndStrMPoleSymplectic4Pass'

- Symplectic integration through the body w/ (X, $\frac{dX}{dz}$, Y, $\frac{dY}{dz}$, δ , Δz) coordinates
 - With PolynomA and PolynomB given on the straight reference axis
 - Fourth order symplectic integrator, but use exact drift with Hamiltonian

$$\mathbf{H} = (1+\delta) - \sqrt{(1+\delta)^2 - p_x^2 - p_y^2}$$

Need to specify entrance position by 'X0ref' and path length difference 'RefDZ'

(The implementation details may differ from that of Elegant.)

X. Huang (SLAC), AT Workshop (10/2/2023)

Usage of BndStrMPoleSymplectic4Pass

- Determination of XOref by finding the reference orbit with the desired bending and entrance angles
 - This done numerically, e.g., by using an optimizer or solver

For symmetric, combined function with bend and quadrupole, an approximate first guess

$$X_{ref} = \rho(\cos\frac{\theta_0}{2} - 1) + \frac{L\theta_0}{24} - \frac{K_1 L^3 \theta_0}{720} - \frac{L\theta_0^3}{576} \qquad \text{With} \quad \rho = \frac{L}{2\sin\theta_0/2}$$

Derived from M. Yoon, et al, Nucl. Instr. Meths. A 523 (2004) 9-18.

For SPEAR3 dipole, w/ L = 1.5069434 m, $K_1 = -0.31537858$ /m^2, and $\theta_0 = \pi/17$ Formula $\rightarrow X_{ref} = -0.0229219$ m, while Numerical $\rightarrow X_{ref} = -0.0229297$ m

For APS-U Q4, w/ L = 0.2110m, $K_1 = 4.004396383$ /m^2, and $\theta_0 = -0.001706915788385$ Formula $\rightarrow X_{ref} = 3.010244 \times 10^{-5}$ m, while Numerical $\rightarrow X_{ref} = 3.010281 \times 10^{-5}$ m

Comparison with BendLinearPass

- The equivalent sector dipole should have
 - The same bending angle
 - Arc length $L_{arc} = \rho \theta = \frac{L\theta}{2\sin\theta/2}$
 - Quadrupole K component, $K_{eff} = K_1 \frac{2}{\theta_0} \sin \frac{\theta_0}{2} \approx K_1 (1 \frac{\theta_0^2}{24})$

Using BndStrMPoleSymplectic4Pass Using BendLine

Rb	=					
	1.3802	1.6840	0	0	0.1474	0
	0.5373	1.3802	0	0	0.2084	0
	0	0	0.6484	1.3337	0	0
	0	0	-0.4346	0.6484	0	0
	0	0	0	0	1.0000	0
	0.2084	0.1474	0	0	0.0090	1.0000

Using BendLinearPass, w/ side negative drifts to correct the length

R0 =

1.3818	1.6858	0	0	0.1384	0
0.5368	1.3786	0	0	0.2068	0
0	0	0.6481	1.3343	0	0
0	0	-0.4345	0.6484	0	0
0	0	0	0	1.0000	0
0.2114	0.1578	0	0	0.0095	1.0000

Comparison of SPEAR3 standard dipole transfer matrix

Comparison to Elegant for APS-U lattice

- Work was done 2018-2019, as part of the effort to verify APS-U performance predictions.
 - The 41-pm lattice was used.
- Lattice model features: Longitudinal gradient bends, negative bends, CCBENDs, quadrupole fringe fields

# of elements	AT model	Elegant model
1120	BendLinearPass	CSBEND
160	BndStrMPoleSymplectic4Pass	CCBEND
800	StrMPoleSymplectic4NPass	KQUAD
480	StrMPoleSymplectic4NPass	KSEXT
6052*	LaDriftPass	EDRIFT

*With 1205 negative drifts.

Linear and nonlinear lattice parameters

Good agreement between the two codes for a variety of

parameters

TABLE III. APS-U lattice parameters calculated with ELEGANT and AT.

	Parameter	ELEGANT	AT
	Horizontal tune, ν_x	95.0999	95.0993
Both linear and	Vertical tune, ν_v	36.0999	36.1007
poplipoar paramotors	Momentum compaction	4.0406	4.0399
nonimear parameters	$(MCF), \times 10^{-5}$		
ſ	2nd-order MCF, $\times 10^{-4}$	1.2092	1.2091
	Chromaticity, ξ_x	8.1183	8.1704
	Chromaticity, ξ_y	4.7221	4.8739
	Natural chrom., ξ_x^{nat}	-133.6488	-133.5874
l	Natural chrom ξ_{y}^{nat}	-111.6335	-111.4689
	Emittance (pm)	41.6612	41.6434
	Energy loss per turn (MeV)	2.8688	2.8700
	Momentum spread, σ_{δ} , $\times 10^{-3}$	1.3499	1.3494
	Damping partition, J_x	2.2497	2.2495
	Damping time τ_r (ms)	6.8446	6.8424
	Horizontal tune, ν_x ($\delta_p = 0.04$)	95.4142	95.4410
Borland, Sun, and Huang, PRAB 22,	Vertical tune, $\nu_y \ (\delta_p = 0.04)$	36.3556	36.3927
114601 (2019)	Horizontal tune, ν_x ($x = y = 2$ mm)	95.2313	95.2324
	Vertical tune, ν_y ($x = y = 2$ mm)	36.1186	36.1189

X. Huang (SLAC), AT Workshop (10/2/2023)

Effects of CCBEND and quadrupole fringe

• But CCBEND has relatively smaller effects

TABLE IV. Changes of lattice parameters when the quadrupole fringe field is turned off in the APS-U lattce, calculated with ELEGANT and AT.

Parameter	ELEGANT	AT
Horizontal tune, $\Delta \nu_x$	0.0579	0.0582
Vertical tune, $\Delta \nu_{y}$	0.1360	0.1374
Chromaticity, $\Delta \xi_x$	-0.0071	-0.0688
Chromaticity, $\Delta \xi_{v}$	0.6184	0.4942
Horizontal tune, $\Delta \nu_x$ ($\delta_p = 0.04$)	0.1022	0.0690
Vertical tune, $\Delta \nu_{y} (\delta_{p} = 0.04)$	0.1792	0.1754
Horizontal tune, Δv_x ($x = y = 2 \text{ mm}$)	0.0738	0.0735
Vertical tune, $\Delta \nu_y$ ($x = y = 2$ mm)	0.1407	0.1415

Effect of quadrupole fringe field

TABLE V. Changes of lattice parameters when the APS-U straight dipoles are replaced by sector dipoles, calculated with ELEGANT and AT.

Parameter	ELEGANT	AT
Horizontal tune, $\Delta \nu_x$, $\times 10^{-5}$	-0.86	-0.86
Vertical tune, $\Delta \nu_{\rm v}$, $\times 10^{-5}$	0.27	0.55
Chromaticity, $\Delta \xi_x$	-0.1187	-0.0021
Chromaticity, $\Delta \xi_{v}$	0.0791	0.0030
$\Delta \nu_x \ (\delta_p = 0.04), \times 10^{-3}$	-6.46	0.68
$\Delta \nu_{y} \ (\delta_{p} = 0.04), \ \times 10^{-3}$	5.02	0.13
$\Delta \nu_x \ (x = y = 2 \text{ mm}), \times 10^{-4}$	2.23	-0.25
$\Delta \nu_y$ (x = y = 2 mm), ×10 ⁻⁴	-2.45	-0.17

Effect of CCBEND

Borland, Sun, and Huang, PRAB 22, 114601 (2019)

Linear lattice functions (one cell)

Nonlinear behavior – phase space

• Agreement extends to the edge of the phase space

Borland, Sun, and Huang, PRAB 22, 114601 (2019)

X. Huang (SLAC), AT Workshop (10/2/2023)

Nonlinear behavior – frequency map in (x, y)

 The tune footprints are in good agreement, but tune diffusion rates differ.

FIG. 8. Tune diagram for frequency map analysis in the *x*-*y* plane. The color code represents the detuning over 1024 turns, $\log_{10}\left(\sqrt{\Delta\nu_x^2 + \Delta\nu_y^2}\right)$, where $\Delta\nu_x$ and $\Delta\nu_y$ are tune changes from the first 512 turns to the second 512 turns.

Borland, Sun, and Huang, PRAB 22, 114601 (2019)

X. Huang (SLAC), AT Workshop (10/2/2023)

Nonlinear behavior – off-momentum stability region

SLAC

• Good agreement in $(x, \Delta p/p)$ space, too.

Comparison of DA and LMA (w/ the same error seeds)

 Linear errors (normal and skew quadrupole components) are added at sextupole locations

SLAC

23

- Rms beta beating at 1%, and with 100% coupling

More accurate symplectic integration for sector dipoles

Hamiltonian for a sector dipole

$$H = 1 + \delta - (1 + hx)\frac{A_s}{B\rho} - (1 + hx)\sqrt{(1 + \delta)^2 - p_x^2 - p_y^2}$$

- In AT, BndMPoleSymplectic4Pass is used to model dipoles with higher field components
 - It uses drift-kick split of the Hamiltonian but integrates the drift without considering the curvature of the reference orbit,

In which AT uses drift $H_1 = \frac{p_x^2 + p_y^2}{1+\delta}$, while it should be $H_1 = 1 + \delta - (1 + hx)\sqrt{(1+\delta)^2 - p_x^2 - p_y^2}$, Exact solution to the latter exists, but requires evaluation of sin, cos, tan, functions.

- And, it does not use the vector potential* for the curved reference orbit

$$A_{s} = -B_{0}\left(x - \frac{hx^{2}}{2(1+hx)}\right) - B_{1}\left(\frac{1}{2}(x^{2} - y^{2}) - \frac{h}{6}x^{3} + \frac{h^{2}}{24}(4x^{4} - y^{4}) + \cdots\right)$$
$$-B_{2}\left(\frac{1}{6}(x^{3} - 3xy^{2}) - \frac{h}{24}(x^{4} - y^{4}) + \cdots\right) - B_{3}\left(\frac{1}{24}(x^{4} - 6x^{2}y^{2} + y^{4}) + \cdots\right)$$

X. Huang (SLAC), AT Workshop (10/2/2023)

*F. C. Iselin, Physical Methods Manual for the MAD Program, September 1994

An attempt to fix this - BndMPoleSymplectic4E2Pass

Expand the bend Hamiltonian

$$H = -(1+hx)\frac{A_s}{B\rho} - (1+\delta)hx + (1+hx)\frac{p_x^2 + p_y^2}{2(1+\delta)}$$

The drift Hamiltonian has approximate solution

$$H_{1} = (1+hx)\frac{p_{x}^{2}+p_{y}^{2}}{2(1+\delta)},$$

$$x_{2} = x + \frac{1+hx}{1+\delta}p_{x}L_{d} + \frac{hL_{d}^{2}}{4(1+\delta^{2})}(p_{x}^{2}-p_{y}^{2}),$$

$$p_{x2} = p_{x} - \frac{hL_{d}}{2(1+\delta)}(p_{x}^{2}+p_{y}^{2}),$$

$$y_{2} = y + \frac{1+hx}{1+\delta}p_{y}L_{d} + \frac{hL_{d}^{2}}{2(1+\delta)^{2}}p_{x}p_{y},$$

$$z_{2} = z + \frac{1+hx}{2(1+\delta)^{2}}(p_{x}^{2}+p_{y}^{2})L_{d},$$

This can be worked to higher orders

X. Huang, SSRL-AP-Note 021 (2009)

X. Huang (SLAC), AT Workshop (10/2/2023)

cont'd

• While solution to the vector potential term can also been approximated $U = (1 + h_{s})^{A_{s}} + (1 + \delta)h_{s}$

Including correction terms up to ocutpoles

$$H_{2} = -(1+hx)\frac{A_{s}}{B\rho} - (1+\delta)hx.$$

$$\Delta p_{x}/L_{k} = -(K_{1}+h^{2})x - K_{2}(x^{2}-y^{2}) - K_{3}(x^{3}-2xy^{2}) - h(K_{1}(x^{2}-\frac{1}{2}y^{2}) + K_{2}(x^{3}-\frac{4}{3}xy^{2}))$$

$$\Delta p_{y}/L_{k} = K_{1}y + 2K_{2}xy + K_{3}(2x^{2}y - y^{3}) + h(K_{1}xy + \frac{4}{3}K_{2}x^{2}y + \frac{1}{6}(hK_{1}-2K_{2})y^{3}) - \Delta z/L_{k} = hx,$$

Problem: these approximations are not symplectic

Can we show that the deviation from the symplectic condition is small and negligible? Or once it is non-symplectic, it is not worth considering?

Summary

- AT had additions of new passmethods to more accurately model magnets
 - Exact drift (LaDriftPass)
 - Fourth-order integrator with quadrupole fringe fields (linear and nonlinear) and exact drift (StrMPoleSymplectic4NPass)
 - Fourth-order integrator on straight geometry with bending field (BndStrMPoleSymplectic4Pass)
- With these additions, excellent agreement with Elegant was seen when applied to the APS-U lattice
 - For both linear and nonlinear properties
- More work may be needed for symplectic integration in sector dipoles