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What is Sustainability?
• Sustainability has been defined in various ways:

"The quest for sustainability involves connecting what is known through scientific study to applications in 
pursuit of what people want for the future” [1]
“Development that meets the needs of the present without compromising the ability of future 
generations to meet their own needs” [2]
"The property of being environmentally sustainable; the degree to which a process or enterprise is able to 
be maintained or continued while avoiding the long-term depletion of natural resources“ [3]

• But my favorite quote is from a climate activists who wanted a more positive word
“If you asked a couple about their marriage and they replied that it was ‘sustainable', that wouldn’t be very 
positive!”
“Transformative” would be better

[1] Harrington, Lisa M. Butler (2016). Papers in Applied Geography. 2 (4): 365–382
[2] United Nations General Assembly (1987) Report of the World Commission on Environment and Development: Our Common Future. Transmitted to the 

General Assembly as an Annex to document A/42/427 – Development and International Co-operation: Environment
[3] Oxford Dictionary
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https://sustainabledevelopment.un.org/content/documents/5987our-common-future.pdf
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Accelerators
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• By their very nature, accelerators alone are not sustainable
• Sustainability for accelerators has three axes:

• Offset the power usage by building an associated green power station 
• ESS is the leader with its own wind farm planned in the Baltic Sea, on-site solar systems, and a 

biomass conversion facility that also produces fertilizer
• Reuse waste heat and water

• Again, ESS is the leader with hot water supplied for commercial and residential heating, and the 
production of biogas

• Minimize the power and water required by improving efficiency in every way possible
• Minimizing the power required is being addressed in all new accelerator projects
• Component efficiencies are being adopted by everyone

• ERLs have an additional advantage by recovering the energy in the beam after use
• This will be the subject of my talk (“The Good”) but I will also point out problems that still need to be 

solved (“The Bad”) and those that may have no solution (“The Ugly”)
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ERL HISTORY AND ACHIEVEMENTS

ESSRI September 29, 2021

2020, Cornell
CBETA, FFAG-arc
4-pass ERL 
(80mA injector, ε = 0.3mm mrad)

2002
Jefferson Lab
“IR-Demo”
SRF, 5mA, 48MeV, 
2.1kW beam power IR
2003
CEBAF, 1 GeV, single 
turn
2007 Upgrade: 
9mA, 150MeV
1.1MW beam  power 
with ~300kW RF 
power

1965 M. Tigner
“A possible 
apparatus 
for electron 
clashing-
beam experiments”

1987 High Energy Physics 
Lab
Stanford University
SRF cavities, proof of principal 
experiment2000

Jefferson 
Lab
“Front End Test”
SRF, first CW 
recovery

1987 Los 
Alamos
FEL-operation, nC,
coupled acc/dec 
cavities

2004 BINP, 
Russia
FEL-operation
normal conducting 
RF, 
30 mA
2007: 4-passes

2002 JEARI, Japan
FEL, SRF, 700kW beam
power

2005 Daresbury Lab, 
GB
“Alice”, SRF, 26MeV, versatile 
10-year user program

under 
construction:
MESA, Germany
particle physics application

PERLE, France
Test facility (FCC-ee)

bERLinPro, 
Germany
SRF/ERL technology test 
facility

2013 KEK,
Japan
“cERL”, prototype 
ERL light source
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The Good, the Bad and the Ugly
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• The Good 
• Beam energy recovered

• The Bad 
• HOMs (beam energies cancel, HOMs add)
• Return arcs (synchrotron radiation loss)
• RF mismatching

• The Ugly
• Cryogenic Power

• For ERLs to be widely adopted, enhance “The Good” and reduce “The Bad” and “The Ugly”
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Where ERLs are Beneficial
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• The beam quality in an ERL is defined by the Injector
• Extremely small emittances are possible, optimum for FELs

• Electron cooling of proton beams requires high currents – energetically unacceptable without 
energy recovery
• Example: EIC electron cooling requires 100 mA @ 150 MeV = 15 MW without energy recovery

• Next generation Electron-Ion Colliders (LHeC, FCC-eh) also require high electron currents –
energetically impossible without energy recovery
• Example: LHeC requires 20 mA @ 50 GeV = 1 GW without energy recovery
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Advantages of ERLs
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• Accelerating an electron beam using the energy of the spent beam
with practically no losses is a unique feature of ERLs

• Overall efficiency of the process is extremely high 

• Advantages
• Reduction in the RF power needed for acceleration
• Smaller RF sources and their associated power transformers
• Less electric power and water cooling required 
• Reduced operating costs as well as a reduced carbon footprint

• Requirements
• SRF cavities which maintain the accelerating gradient with very low losses
• Careful control of the high beam power

• Design, diagnostics, algorithms
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Gun
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• Gun technology is improving regularly

• DC guns are inherently efficient, but high-current beams still pose problems
• Room temperature RF guns are less efficient as RF losses are unavoidable
• SRF guns have low RF losses, but at cryogenic temperature, so will be relatively inefficient

• Likely to have the best emittance characteristics

• Since the gun is a small part of the power load, most effort is directed to high bunch charge 
and small emittance
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Electron Guns
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Cornell DC Gun LBNL RF Gun bERLinPro SRF Gun

Laser input

Electron beam
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Injector
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• The injector operates in a regime where the velocity changes with 
energy for longitudinal bunching

• The beam energy from the injector cannot be recovered and ends up in a dump
• The injector should have as low an energy as possible, consistent with the beam quality required

• The RF sources in an ERL injector require significantly higher power than in the ERL itself
• Example of an ERL light source

• Injector beam energy = 5 MeV
• Injector current = 1 Amp
• Injector beam power = 5 MW

• High energy colliders require cascaded ERLs to keep the energy ratio reasonable

• The spent beam at the dump has an energy equal to the injector 
• The energy is usually below the neutron production threshold (~ 8 MeV)

• Significant reduction in the shielding needed
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Higher Order Modes (HOMs)
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• Recovering the energy of the beam is the hallmark of ERLs
• But HOMs from the accelerating and decelerating beams are additive
• ERLs are most efficient with high-power beams

• HOM power dissipation must be minimized by cavity design 
• Heat must be brought out of the cavity to a higher temperature

• Thermal isolation should be maintained

• Only possible solution is intra-bucket energy recovery* 
• Brings other problems!

*Erk Jensen: 
https://indico.cern.ch/event/1040671/contributions/4371231/attachments/2258316/3834412/
Energy%20Recovery%20%26%20Sustainability.pptx
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ERLS Require Precise RF Matching
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• To minimize RF losses, it is important to properly match the cavity to 
the power source under all the different operating conditions

• Variable fundamental power couplers are needed
• Power must be delivered to the cavity during start-up, which requires a large coupling coefficient
• Power required by the cavity drops to a small value during steady-state operation, so a small coupling 

constant is preferred 

• Variable couplers are used to avoid large reflected (and, therefore, wasted) power
• Traditionally, tuners that squeeze the cavity are used to match the frequency of 

superconducting cavities to the power source 
• These are relatively slow (seconds)

• Piezo-electric tuners have been used to make faster adjustments (up to 3 kHz) 
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Fast Reactive Tuners

13

• The recent development of Fast Reactive Tuners (FRTs) is a big step 
forward for ERLs

• The change in tuning is achieved using an external magnetic field to change the permittivity 
of a special ceramic

• No moving parts so the FRT can respond to fast transients (up to 10MHz)
• Simulations show that the reflected RF power can be reduced almost to zero
• This will be tested in a cryomodule at bERLinPro

• For ERLs, this capability is a game-changer!

• Shout-out to Nick Shipman who has spearheaded this development*

* https://indico.cern.ch/event/835947/contributions/3609044/attachments/1932966/3202118/Shipman_Electrons_For_the_LHC.pdf
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Prototype Fast Reactive Tuner
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• No moving parts
• Outside cryomodule
• Continuous tuning range
• No need to generate a 

large magnetic field
• Intrinsic speed < 10 ns
• Low losses/small 

increased bandwidth
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Case Study - PERLE
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• Calculated results of the application 
of Fast Reactive Tuners to PERLE
• Reduction of total RF power by a factor 

of 7.5 from 732 kW to 97.6 kW

• https://indico.cern.ch/event/835947/c
ontributions/3609044/attachments/19
32966/3202118/Shipman_Electrons_
For_the_LHC.pdf

Note log scale!

https://indico.cern.ch/event/835947/contributions/3609044/attachments/1932966/3202118/Shipman_Electrons_For_the_LHC.pdf
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FRTs - Why Now?
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• Suitable material only recently developed*
• BaTiO3 - SrTiO3 solid solution (BST)

• Added linear (non-tunable) Mg-based ceramic component**
• Enhanced tunability with low losses

• Sustained R&D program at CERN, and commercial support from Euclid Techlabs

• This is what it takes to solve the various R&D challenges!

* E. Nenasheva et al., Journal of European Ceramic Society, vol. 30, pp.395–400, Jan. 2010.
** A. Kozyrev et al., Appl.Phys. Lett., vol. 95, pp. 1–5, Jul. 2009
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Power dissipation in an SRF Cavity

17

• The dynamic heat produced in an SRF cavity is usually written as:

Pcryo = V2*D / [(R/Q)*Q0]

• Where: 
• Pcryo is the power deposited at cryogenic temperature in the cavity
• V is the accelerating voltage across the cavity
• D is the duty factor (=1 for CW)
• (R/Q) is a geometrical constant of the cavity, usually 100 – 1,000 for SRF cavities
• Q0 is the quality factor of the cavity

• The power is dissipated at cryogenic temperature so we need to examine the whole 
cryogenic system, not just the cavities
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Coefficient of Performance
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• Coefficient of performance (COP) as a function of temperature of a 
cryogenic system for the LHC [thanks to P. Lebrun]

Efficiency improved 
by factor 3.5 
between 2K and 4.5K
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Electrical Power to Cool an SRF Cavity
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• COP is the ratio of the electrical power input to the cryoplant to the
cooling at cryogenic temperature
• ~ 800 @ 2K
• ~ 230 @ 4.5K
• In a typical plant, additional power is required for the cryo-support systems (e.g., guard vacuum, 

purifier), cryo-controls, and conventional utilities (e.g., cooling water, instrument air)
• These items are not included in the COP

• Let ε be the fraction of the cryoplant cooling that is delivered to the SRF cavities

• The power required from the grid Prt to cool an SRF cavity is then

Prt = (COP/ε)*V2*D / [(R/Q)*Q0]
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• Instead of considering the cavity and cryoplant separately, we should 
optimize the system
• Need a metric that includes all of the factors

• Define an SRF Energy Metric 𝛯𝛯 (nΩ)

𝛯𝛯 = [(R/Q)*Q0] x 10-9 / (COP/ε)

• The electrical power (Prt) at room temperature needed to sustain an accelerating 
voltage V is then

Prt (kW) = V(MeV)2*D / 𝛯𝛯
• So 𝛯𝛯 acts like the resistance in Ohms Law

A Useful SRF Energy Metric for SRF

20
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𝞝𝞝 (Xi)
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• 𝞝𝞝 is the 14th letter of the Greek alphabet 
• It is not pronounced like the Chinese Xi

• Nor is it related to Tai Chi

• It is pronounced like Banksy
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Why Have an SRF Energy Metric?
• Gigi Ciovati explained it well:
• “How many solar panels would be required to operate a cavity at the required accelerating 

gradient in a given accelerator? 
• Example: a C100 cavity at nominal 18 MV/m, Q0=8x109, Energy Metric     58 solar panels”

• Requires sunlight 24 hours per day 

• Compare my house with two air conditioning units
• 24 solar panels provide ~95% of electricity

• Averaged over night, rain, cloud, etc

22
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How can we improve 𝛯𝛯?

𝛯𝛯 = [(R/Q)*Q0] x 10-9 / (COP/ε)
• R/Q can be improved with low loss cavities

• Cavity shapes have been carefully optimized already, and further significant progress is unlikely

• Q0 has seen enormous progress recently, there may be more to come
• COP has been improved about as far is is possible

• But COP only measures the output of the cryoplant compared to the input power

• ε covers a long list of things which are often ignored
• ε includes the power required to remove the heat 

• Worst - cooling towers
• Better – cooling ponds as at Fermilab
• Best – re-use the heat as at ESS

23
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Cryogenic Distribution Improvements
• ε also includes the losses in the transfer lines, cooling of the shields
• Possible improvements:

• Increase the cryogenic efficiency by placing the heat exchangers in the tunnel instead of in the cryoplant
• This results in a 7% improvement in cryogenic efficiency as measured at SNS

• Increase the cryogenic efficiency by bringing the high pressure stream of the sub-cooler heat 
exchanger out to the JT valve and then back into the heat exchanger
• This increases the cryogenic efficiency by an additional 7% as at FRIB

• There is another hidden inefficiency
• The cryoplant is usually over-dimensioned to cover possible low Q0 or future expansion
• Most cryoplants lose efficiency when operated below the design point
• Solution – use the Ganni cycle where the efficiency stays constant down to ~30% of the design point

24
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• Compare identical cavity shapes (R/Q is the same)
• Assume that ε is the same for both cases
• Then to be beneficial

(Q0)4.5 must be > COP2.0/COP4.5 * (Q0)2.0

(Q0)4.5 must be > (Q0)2.0 / 3.5

• Example for CW 1300 MHz 9-cell cavities
• Best Q0 at 2K is 2.7 x 1010 at gradient 16 MeV/m * (in cryostat)
• Best Q0 at 4.4K is 1 x 1010 at gradient 15 MeV/m **

• Nb3Sn cavities are approaching useful Q0

Comparison of 4.5K and 2K Operation

25

* D. Gonella et al, https://indico.desy.de/event/32219/contributions/116543/attachments
/71215/90891/Gonnella%20HE%20R%26D%20Presentation.pdf 

** Sam Posen et al https://arxiv.org/pdf/2008.00599.pdf

Vertical test performance of Nb3Sn 
coated 9-cell cavities TB9ACC014 and 
TB9AES005 at 4.4 K**

not in cryostat

https://arxiv.org/pdf/2008.00599.pdf


ESSRI Sustainability Workshop September 29, 2022

Duty Factor D
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• There are three regimes:
• CW is used for the majority of ERLs

• Pulsed is used for high gradient cavities
• Example: RF pulse rep rate of the XFEL is 10 Hz
• Static losses tend to outweigh dynamic losses

• “Gated” RF 
• CERL* proposes 2 seconds RF on, 4 seconds RF off
• This has never been tried
• Cornell is seeking funding to test the the 

concept on the CBETA Injector module

* V. Telnov, A high-luminosity superconducting twin 
e+e- linear collider with energy recovery,
Journal of Instrumentation 16 (2021) P12025
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Thankyou
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ERLs

Cryo

HOMs



Back-Up
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Floating Pressure
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• The “Ganni Cycle” is an improvement in cryogenic plant efficiency
• A cryogenic plant operates using many stages of: compression of the 

gas; removal of the heat; and decompression of the gas, which lowers the temperature
• Each of these intermediate stages has an input pressure and an output pressure
• The conventional wisdom was that these input and output pressures should be fixed and the 

compressors/ decompressors should be optimized for these fixed pressures 
• In the “floating pressure” scheme, invented by Rao Ganni, the pressures at the interfaces 

between the different stages of the cooldown are allowed to float
• This increases the plant efficiency, because optimizing each stage is less efficient than 

optimizing the overall system
• What was initially surprising was that the intermediate pressures would naturally stabilize at 

the optimum values; this is the so-called “floating pressure” principle
• Note that this is only valid for cooling down to 4.2K
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The Ganni Cycle
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• The full Ganni Cycle incorporates other efficiency improvements
• Together, the cycle allows the efficiency of the plant to remain at the 

same high level from 100% down to 30% load
• Since a large cryoplant must be sized for the maximum load plus a safety margin, most 

existing plants are operated with reduced efficiency; this is not the case for the Ganni Cycle
• At this time, the Ganni cycle is patented and licensed to Linde, one of the two European 

Cryoplant constructors; the other, Air Liquide, declined
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