

Water, reduction in consumption and treatment of effluents from cooling towers

6th Workshop Energy for Sustainable Science – S. Deleval - CERN

2022-29-09

Reference (https://indico.esrf.fr/event/2/contributions/112/)

Content

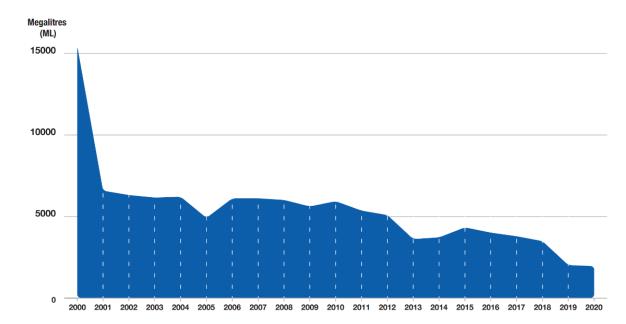
- Introduction
- Objectives of the project
- Solution 1
 - Cooling tower of the Booster accelerator
- Integration of environmental aspects in the design
- Solution 2
 - Cooling tower of the North Area
- Water treatment plant for LHC and SPS
- Status of the project
- Conclusion

2

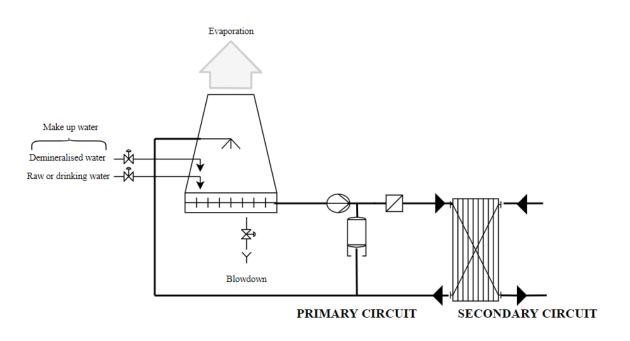
Introduction (1/2)

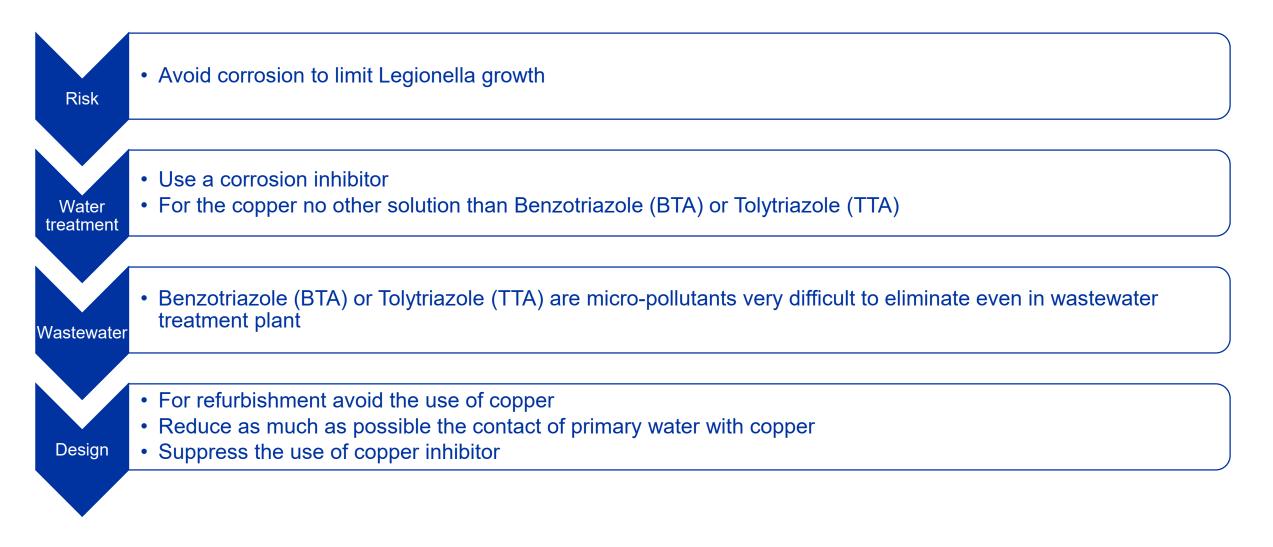
- CERN Accelerators and Experimental areas are cooled by means of open wet cooling towers
- 24 sets of cooling towers (with cumulated cooling capacity of 450 MW)
- For a run year CERN cooling towers consume ~1 500 000 m3/year (=45% of overall CERN consumption)
- Cooling need is increasing gradually over the years:
 - 2 additional cooling towers to put in operation during the 2 coming years.
 - 1 additional cooling towers to build in 3 years
 - Upgrade of other system (additional cell)

Introduction (2/2)


- CERN follow French law in matter of Legionella risk
- For the prevention against Legionella growth, water treatment is regulated in the circuit according to the guidelines (bests practices) provided by the French ministry of the Environment
- Water concentrated in salts and containing residuals of the products used to prevent bacteria is released as effluent

Objectives of the project


- Avoid strong increase of the CERN water consumption (see CERN environmental report) despite the constant increase of cooling needs
- Re-use and recycle water
- Reduce the impact of cooling tower water treatment in the environment


Solution 1

- Make-up water with raw and demineralised water
- Reduction of blowdown and water consumption
- Solution applied when limited space
- Water treatment specific to this process

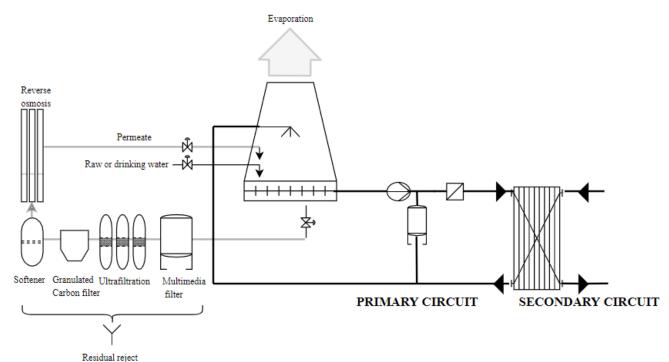
Integration of environmental aspects in the design

Cooling tower of the Booster accelerator (1/2)

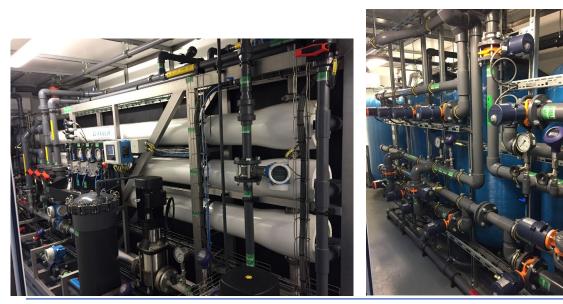
- Complete refurbishment in 2019 and 2020
- Implementation of solution 1
- Cooling capacity (strongly increased) = 9,1 MW
- Water flow = 710 m3/h

GINEERING

Cooling tower of the Booster accelerator (2/2)

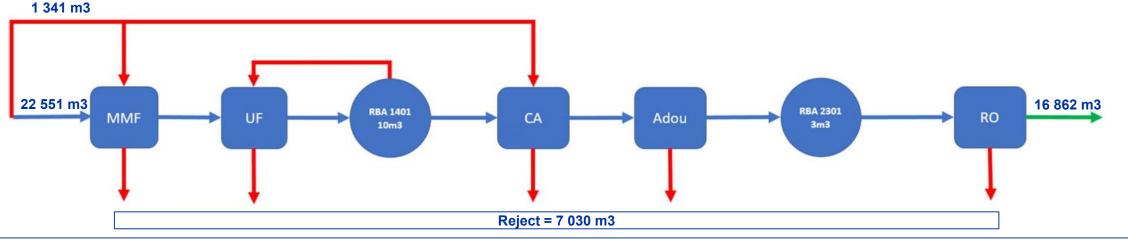

- Reduction of blowdown despite the increase in the thermal load
- Reduction of water treatment consumption and impact in the environment

	2018	2021	Difference
Make-up water	35 079 m3	25 624 m3	- 27%
Blowdown	7 677 m3	3 001 m3	- 39%
Average power during summer	Estimated ~3 MW	3,2 MW	+ 6%
	2018 (<sept.)< td=""><td>2022 (<sept.)< td=""><td>Difference</td></sept.)<></td></sept.)<>	2022 (<sept.)< td=""><td>Difference</td></sept.)<>	Difference
Make-up water	2018 (<sept.) 23 532 m3</sept.) 	2022 (<sept.) 23 424 m3</sept.) 	Difference 0%
· · · · · · · · · · · · · · · · · · ·			


- Add a water treatment plant
- Re-use of water
- Strong reduction of reject
- Residual reject to the wastewater network
- Solution applied for bigger circuit with enough space
- Water treatment specific to this process

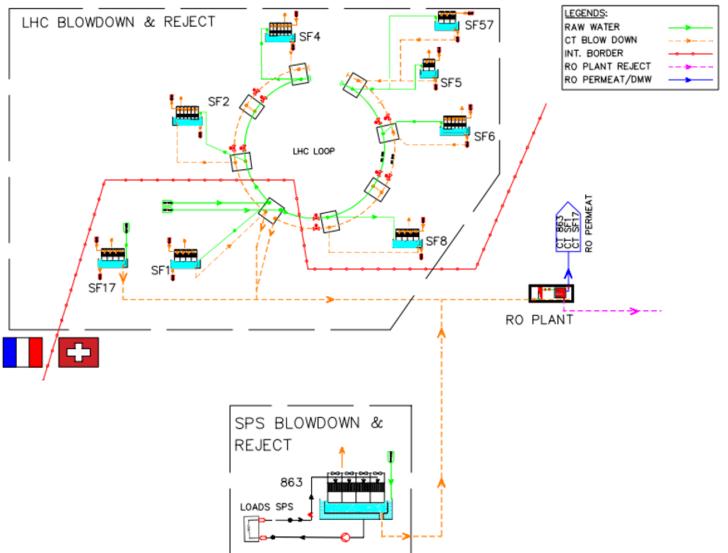
Cooling tower of the North area (1/2)

- Implementation of solution 2
- Cooling capacity = 57 MW
- Water flow = 2400 m3/h



Cooling tower of the North area (2/2)

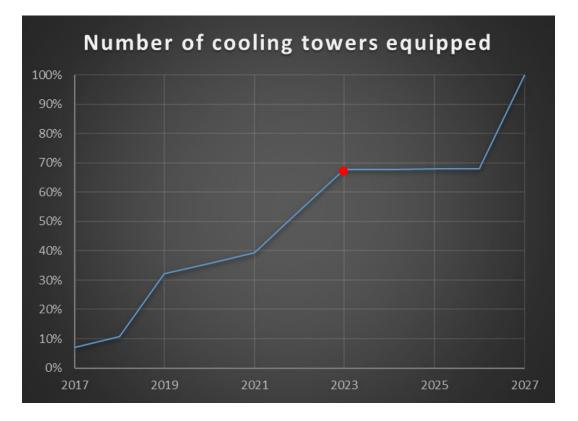
- 16 862 m3 recycled => sent back to the cooling tower
- Reduction of wastewater despite the increase in the thermal load
- Reduction of water treatment consumption and impact in the environment


	2018 (<sept.)< th=""><th>2022 (<sept.)< th=""><th>Difference</th></sept.)<></th></sept.)<>	2022 (<sept.)< th=""><th>Difference</th></sept.)<>	Difference
Make-up water	103 793 m3	86 931 m3	-16%
Blowdown	27 939 m3	7 030 m3	- 75%
Average power during summer	ND	21 MW	Increased compared to 2018

Water treatment plant for LHC and SPS (1/2)

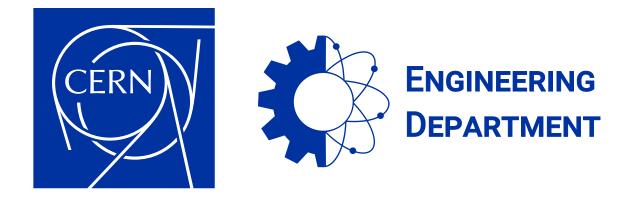
- One treatment plant for all LHC and SPS circuits
- Recycled water will be used in the cooling towers close to the treatment plant (SF1, SF17 and 863)

Water treatment plant for LHC and SPS (2/2)


- Study of potential alternative solutions or optimizations of the water treatment plant with their
 - Budget
 - Consumption (electricity, water, product,..)
 - Maintenance costs

Status of the project

- Plan of deployment over 10 years with a budget of 9,2 MCHF
- Most of the circuits treated => representing 34% of total flow of wastewater
- Ahead of schedule
- The last 9 circuits will be treated during the Long Shutdown 3 (plan in 2026-2027)



Conclusion

- With the new projects, CERN cooling need has increased and will rise even more in the coming years
- To contain increase of water consumption and improve the quality of the water rejected CERN has set a project in 2016
- Circuits equipped with the defined solutions have shown the expected results
- The biggest water treatment plant for the reject of LHC and SPS will be installed in 2026 – 2027
- Major investment for CERN

home.cern