

European Magnetic Field Laboratory

Energy management at High Magnetic Field Facilities

François Debray Magnet development at LNCMI-Grenoble

6th Workshop

Energy for Sustainable Science

at Research Infrastructures

with contribution from **Frans Wijnen** Magnet development at HMFL-Nijmegen

State of the Art of High Magnetic fields

High field Magnets are not commercial products → Facilities are required for researchers

Pulsed field in Toulouse Various capacitors banks (10 kJ to 14 MJ)

24 MW to power the high field resistive magnets.

4 of them are mobile

to perform experiments in other facilities and combine magnetic field with intense lasers, X-rays, or neutrons (LULI, ESRF, SLS, ILL...) $_{\rm 3}$

6th Workshop Energy for Sustainable Science at Research Infrastructures

DC Field in Grenoble

Energy for high field resistive magnets

Pulsed B (~100T)

The Maximal pulse duration (~100 ms) Is given by

$$\Delta t \propto [AI] = \int_{77K}^{T_{\text{final}}} \frac{C_v}{\rho} dT$$

20 MJ max. per pulse

➔ 15 MWh per year

Continuous (~ 40 T)

Need of a permanent turbulent forced flow cooling :

$$h(W.m^{-2}.K^{-1}) \propto V^{0.8} D_H^{-0.2}$$

24 MW max of Power

→ 15 GWh per year

6th Workshop Energy for Sustainable Science at Research Infrastructure 3 large scale facilities on the "presqu'ile" in Grenoble All cooled from the river "Drac" (no chillers nor cooling towers)

NEUTRONS FOR SOCIETY

6th Workshop Energy for Sustainable Science at Research Infrastructures CINIS

ENERGY vs Time

In high field facilities : only one user at a time :

The electrical consumption is a direct image of the researcher strategy → Very high intermittencies.

Energy for the high field facility in Grenoble (MWh) : statistics

Years

Which solutions for a sustainable (resilient ?) energy management at high field facilities ?

Use of the two main high field magnet site at LNCMI-G Jan. 2018 to Sept. 2022

Tendencies

Use of very high field mainly for « sweeping » experiments due to **budget limitation**

➔ development of HTS magnets for long duration experiments The main energy is not spent at maximal power

➔ Consequence on the dimensionning of a heat valorization project

Developping HTS magnets for long duration high field experiments

National fundings

 $(CEA-CNRS) \rightarrow$ investment for a 30 T & then 40 T all superconducting user magnet FASUM H2020 supports SUPER-EMFL

→ To disseminate the HTS technology through research infrastructure **ISABEL**

→ To ensure the long term sustainability of high field laboratories

PROGRESS on this subject to be presented by Xavier CHAUD at the coming 2022 ASC conference

Energy for Sustainable Science at Research Infrastructures

Use of the two main high field site at LNCMI-GJan. 2018 to Sept. 2022

Tendencies

use of very high field mainly for « sweeping » experiments **budget limitation**

→ development of HTS for long duration experiments

the main energy is not spent at maximal power

→ Consequence on the dimensionning of a heat valorization project

1st step for recovering the waste heat : a local loop on CNRS Campus

Perimeter : the heating loop of the CNRS buildings

Needs : 2 GWh per year (provided by the urban heating network

Objective 10 to 30 % covered by the high field lab. <u>without</u> heat pump nor storage

2023 : final studies
2024 : operation
2025 : 2nd step with a direct connection to the urban heating network (tbc)

6th Workshop Energy for Sustainable Science at Research Infrastructures

CINIS

Other solution implemented in high field labs: the Nijmegen Aquifer Thermal Energy Storage

- Aquifers to store cold and warm water
- Heat pumps in building to cool or heat building

10 wells,5 for cold storage,5 for heat storage

Since 2014 : the high field lab is connected to this network.

6th Workshop Energy for Sustainable Science at Research Infrastructures

ATES & High Field Magnet Laboratory in Nijmegen

Heat is stored in 1500 + 2500 m³ buffer → Re-use ~15% of the 10 GWh annual energy consumption

CINIS

ELECTRICAL GRID : ELECTRO-INTENSIVE RESEARCH INFRASTRUCTURES CAN CONTRIBUTE ACTIVELY TO THE STABILITY

Need of balance at any time between Generation / Consumption on the electrical grid 36 inter-connected countries in Europe (see RTE and Energy Pool this morning)

https://app.electricitymaps.com

Flexibility of Research Infrastructures :

Ability to modulate (or to withdraw) our consumption

- for a given period of time
- at different time scales (corresponding to 1st, 2nd and 3rd Reserve)
- to contribute to the balance
- ➔ Major issue for the energy transition

6th Workshop Energy for Sustainable Science at Research Infrastructures

SERVICE TO THE GRID AT LNCMI

→ From December 2020 : LNCMI has participated to the balance of the electrical grid though :

"NEBEF", load shedding mechanisms

- → capacity to shift an energy block
- "PP2" , capacity mechanism (during winter peaks) → capacity to withdraw from the grid

These mecanisms were made operational thanks to **a 2 day ahead planification**. A total of 15 operations were organised within an experimental programme with an aggregator

→ Next step : faisabiliby studies of piloted consumption for frequency regulation (1st & 2nd reserve mecanisms, see Energy Pool presentation)

Could be an interesting collaboration with Synchrotron facilities

➔ Objective to increase the number of operations

6th Workshop Energy for Sustainable Science at Research Infrastructures

CONCLUSIONS

Energy management in high field facilities

- Optimise the usage
- Services to the Grid
- Services to the District (heat valorisation)

3 intricated themes with the User at the center of the process

We thanks suports from :

« Cellule Energie » CNRS

Isabel Project (Europa H2020)

Interdisciplinary Project IDEX, UGA

What do we need to go further (and faster) ?

- ➔ Easier access to energy data for efficient studies (OTE project in Grenoble),
- ➔ Transverse gouvernances on Energy issues,
- ➔ Publish to learn from each other .. but not only the success stories.

→ About the interdisciplinary approach to advance on these 3 items see presentation of Fréderic Wurtz in this session.

Eco-SESA

6th Workshop Energy for Sustainable Science

t Research Infrastructures