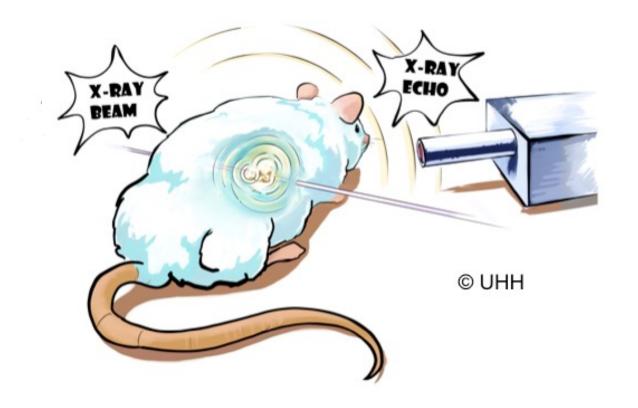


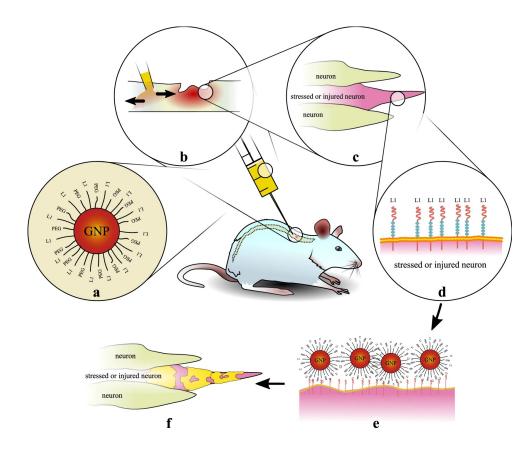
Principles of and Requirements for X-Ray Fluorescence Imaging (XFI)

Florian Ziegler


Accelerator Physics, Institute of Experimental Physics, University of Hamburg (UHH)

and Center for Free Electron Laser Science (CFEL)

Outline

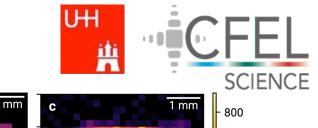

- Why use XFI?
- Principles of XFI
- Requirements on detectors
- Preclinical R&D goals

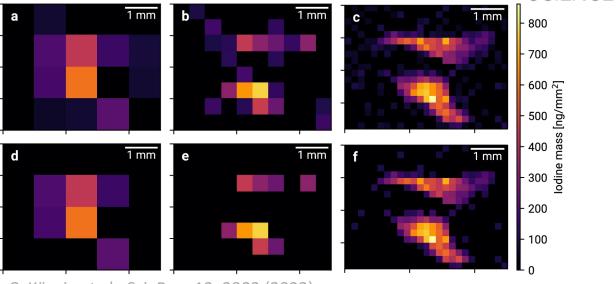
Why XFI?

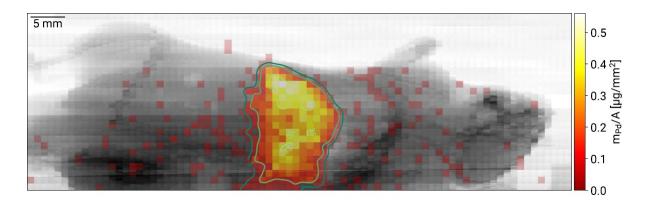
- Possibility to label different entities
 - →immune cells
 - →medical drug compounds
 - →Functionalized nanoparticles
 - →antibodies
 - →Micro- and nanoplastics
- → applications in medical diagnostics or pharmacokinetics

F. Grüner et al., Sci. Rep. 8, 1656 (2018)

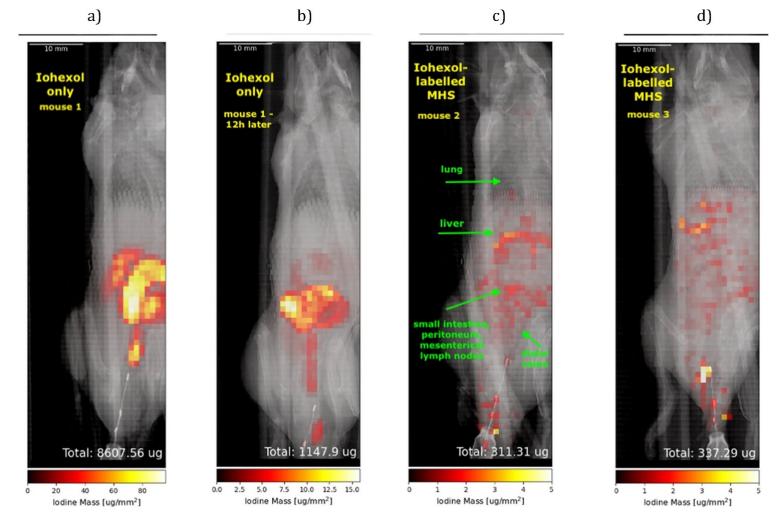
Principles of XFI




- Pencil X-ray beam scans object
- Excitation of characteristic fluorescence
- Resulting fluorescence can be detected
- → determine absolute amount and location of tracer

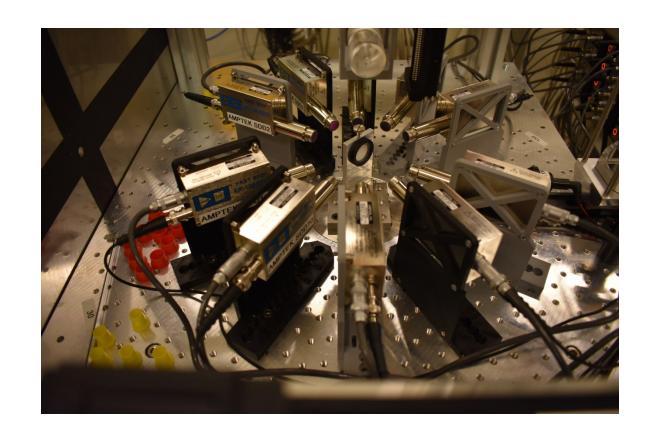

Added values of XFI

- Non-invasive
- High sensitivity
- High spatial resolution
- Longitudinal studies
- Multi-tracking
- Multi-scale imaging



C. Körnig et al., Sci. Rep. 12, 2903 (2022)

T. Staufer et al., Sci. Rep. 13, 11505 (2023)



- Used CdTe and Si-PIN detectors for multiple XFI measurements with different tracers
- Proof-of-principle XFI measurements at a Thomson source with a **HEXITEC** detector
- Extensive work on calibration using radioactive sources
- Spatial reconstruction in XFI-measurements using pixelated detectors

Requirements on detectors

- Good energy resolution (≤ 1 keV FWHM at 60 keV)
- High efficiency
- Large active area
- Little intrinsic detector effects
- High count rate capability

Preclinical R&D goals

- Pharmacokinetics
 - → tracking of medical drugs (in vivo)
- In vivo tracking of immune cells
- Tracking of nano- and microplastic particles

Detectors:

- Increase number of detectors
- Use multiple or pixelated detectors to cover a larger area

Publications by UHH-Team on XFI

- Florian Grüner et al. "Localising functionalised gold-nanoparticles in murine spinal cords by X-ray fluorescence imaging and background-reduction through spatial filtering for human-sized objects", Scientific Reports, Volume 8, Issue 1, Article number 16561 (2018)
- Carlos Sanchez-Cano et al. "X-ray-Based Techniques to Study the Nano-Bio Interface", ACS Nano 2021, 15, 3754-3807
- Oliver Schmutzler et al. "X-ray Fluorescence Uptake Measurement of Functionalized Gold Nanoparticles in Tumor Cell Microsamples", Int. J. Mol. Sci. 2021, 22, 3691
- Henrik Kahl et al. "Feasibility of Monitoring Tumor Response by Tracking Nanoparticle-Labelled T Cells Using X-ray Fluorescence Imaging—A Numerical Study", Int. J. Mol. Sci. 2021, 22, 8736.
- A. Ungerer et al. "X-ray-Fluorescence Imaging for In Vivo Detection of Gold-Nanoparticle-Labeled Immune Cells: A GEANT4 Based Feasibility Study", Cancers **2021**, 13(22):5759
- C. Körnig et al. " In-situ X-ray fluorescence imaging of the endogenous iodine distribution in murine thyroids", *Scientific Reports* 12, 2903, **2022**
- J. Baumann et al. "Enabling Coarse X-ray Fluorescence Imaging Scans with Enlarged Synchrotron Beam by Means of Mosaic Crystal Defocusing Optics", *Int. J. Mol. Sci.* **2022**, *23*(9), 4673
- T. Staufer, M.L. Schulze, O. Schmutzler et al. "Assessing Cellular Uptake of Exogenous Coenzyme Q₁₀ into Human Skin Cells by X-ray Fluorescence Imaging", *Antioxidants* 11, no. 8:1532, **2022**
- Y. Liu et al. "Size- and Ligand-Dependent Transport of Nanoparticles in Matricaria chamomilla as Demonstrated by Mass Spectroscopy and X-ray Fluorescence Imaging", ACS Nano, 2022
- T. Staufer et al. "Enabling X-ray fluorescence imaging for in vivo immune cell tracking", Scientific Reports 13, 11505, 2023
- T. Staufer and F. Grüner "Review of Development and Recent Advances in Biomedical X-ray Fluorescence Imaging", Int. J. Mol. Sci. 2023, 24(13):10990

Our UHH-XFI-Team



