Detector Development for the future European XFEL

European

Marco Ramilli for the EuXFEL Detector Group

HiZPAD Workshop CFEL, DESY Campus, Hamburg, 20.09.2023

European XFEL

Outline

Introduction

- Future detectors requirements
- How we plan to be involved
- Conclusions

Marco Ramilli, Detector Group, HiZPAD meeting, September 20th, 2023

Introduction: European XFEL

Three main undulator systems (SASE 1, 2, 3)

- Supply seven scientific instruments
- SPB/SFX, FXE, MID, HED ('hard X-ray')
 - ▶ 6 keV < E < 25 keV
- SCS, SQS, SXP ('soft X-ray')
 - ▶ 0.25 keV < E < 3 keV

- 10 Hz train rate
- Bunch train internal structure
 - **2700 pulses** for 600 µs
 - **4.5 MHz pulse rate** (~222 ns spaced)
 - Lasing pulses < 100 fs width</p>
- Pulses of ~ 10¹⁴ photons
 - Most experiments are pulse-resolved
 - Detectors need to cope with bunch train structure

Detector Development for the future at European XFEL

Marco Ramilli, Detector Group, HiZPAD meeting, September 20th, 2023

Detectors for EuXFEL

Hard X-rays 6-25 keV

X-ray energy

ePix100 (MID, HED)

pnCCD (SQS)

Soft X-rays 0.5-3 keV

European XFEL

10 Hz

Noise: 3 e-Dyn range: 1500-3000 1 keV ph

Noise: 80 e- (HG)

Dyn range: 10⁴ 12 keV ph

Noise: 280 e- (HG) Dyn range: 10⁴ 12 keV ph Up to 2700 images/train JUNGFRAU x 18Irth (all hard X-ray inst.)

GOTTHARD-II (all instr.)

Noise: 350 e- (HG) Dyn range: 10⁴ 12 keV ph

DSSC (SCS, SQS)

4.5 MHz

Noise: 60 e-Dyn range: N x 256 ph @ 4.5 Mhz -N x 512 @ f≤2.2 MHz $N \leq 1$ for single ph sens.

Rate

LPD (FXE)

Noise: 2010 e- (HG) Dyn range: 10⁵ 12 keV ph

4

Facility developments: new time structure and photon energy

Time structure not yet defined, some options under consideration

Slide courtesy of the accelerator team, in particular J. Sekutowicz and E. Vogel

- Without major accelerator modifications
- CW mode implies a max electron energy of 7 GeV (with respect to the 17.5 GeV of now)
- energy can be gained by running in high duty-cycle mode, when RF is on for a fraction of time (the present burst mode corresponds to a duty cycle of 0.006)
- Optimizing the usage of higher harmonics
- Increase photon energy to ~ 30 keV
- photons/pulse ~ factor 10 lower at E ~ 30 keV

Water experiments at MID

- Scattering experiment to measure properties of water
 - Performed with AGIPD 1M at MID
 - Scattering vectors scientifically interesting:
 - ▶ Photons @ 21 keV
 - Detector closer to increase field of view
 - Very dangerous for current detector
- Increased photon energy would allow access to larger scattering vectors
 - High Z sensor would allow better ASIC safety

Detector requirements

- Good QE E > 20 keV
- Single photon sensitivity
- Smaller pixel for increased angular resolution

slide courtesy of Roman Shayduk

Determination of phase diagram of low Z materials

- Exploring the phase diagrams at high P-T conditions
 - Conditions found in interior of planets
- Performed at scientific instrument HED
 - High pressure achieved with diamond anvil cells
 - Heating with X-rays or laser
 - Diffraction acquired with AGIPD 500k
 - ► 4.5 MHz frame rate allows tracking of material dynamics

Higher photon energies:

- More information on a smaller detector
- Reach higher q
- Penetrate the diamond more easily
- Investigate lower Z materials
- Detector requirements
 - Good QE E > 20 keV
 - MHz-level frame rate to track dynamics

slide courtesy of Thomas Preston

European XFEL

FORCE

Courtesy of proposal #3406: Determination of the carbon phase diagram using single pulsed laser heating in a diamond anvil cell in combination with MHz X-ray diffraction

MHz X-ray microscopy

- Material imaging
 - Obtain structural and temporal information
- Proof of principle performed at SPB/SFX
 - JUNGFRAU in 'burst' mode (~100 kHz, 75 µm pixel)
 - Photon energy at 10.8 keV
 - Very high contrast and resolution reached

slide courtesy of Patrik Vagovic

- Increasing energy to 30 -35 keV
 - Penetrate deeper into material
 - **Detector requirements**
 - Good QE ~ 30 keV range
 - Maintain pixel pitch ~75 µm
 - MHz frame rate capability

Preliminary requirements from Scientific Instruments

Parameter	Target values	Possible variants
Sensitive Energy Range	3-13 keV with Si	
	13-50 keV with high-Z materials	
Dynamic range in photons	5 x 10³ 12 keV ph./pixel	500 – 1000 12 keV ph./pixel fixed gain
Noise (ENC)	< 300 el. rms.	
Frame rate	1.1 MHz burst/long burst	4.5 - 1.1 MHz burst/long burst
Sensor type	2D pixelated	
Pixel size	80 -100 μm pixel pitch	
Pixel count	Modular detector, min. module size tbd. Able to build up several Mpixel full-size detector	
Number of modules	Tbd, depending on module size	
Operating pressure range	Ambient or below 10 ⁻³ mbar	

Hard X-ray detector

How to get to the final requirements?

How do we get to the h/w definition and final requirements?

- Continue to evaluate scientific requirements
 - e.g. dyn. range at high energies
- Max repetition rate:
 - MHz rate is a must, continuous operation is not
 - duty cycle will be a machine parameter
- Fully integrate lessons learned from first systems in the new developments
 - Avoid multiple standards
 - Modular detectors

. . .

2030

Detector development

2023 Phase I – R&D 2026

Phase II – Development and Production 2030

Goal: 2nd generation of Large Area Pixel Detectors 2028-2030, matching expected lifetime

Phase I 2023 – 2025

- System integration, backend electronics
- System integration, mechanics and cooling
- ► High-Z materials
- Sensor and ASIC
- Main goals:
- ► increase our expertise in key areas
- ▶ identify a feasible project fitting with the timeline, possibly in the direction we want to go in the future

Phase II 2025 – 2030

- Establish concrete projects to build detectors to be ready for 2030
- Prototyping of selected technologies
- Final designs
 - Construction and commissioning at Scientific Instruments
 - European XFEL

How we plan to be involved

- Our main expertise are in calibration, system integration and some part of mechanics
- Take a leading role concerning mechanics and backend
- Take a more active role for the front-end development (ASIC and sensor)
 - Need to retain know-how in house
 - Small team of experts with overview of the systems developed

Mechanics

Figure from M. Porro et al., "IEEE Transactions on Nuclear Science, vol. 68, no. 6, pp. 1334-

... next steps

Our main expertise are in calibration, system integration and some part of mechanics

Take a leading role concerning mechanics and backend

Take a more active role for the front-end development (ASIC and sensor)

- Need to retain know-how in house
 - Small number of people with overview of the systems developed

Put in place collaborations with high Z experts

- Strengthen collaboration with more experienced groups
- Allow us to build experience
 - First hand experience in testing, data analysis
 - Understand usability
 - ► Perform first applications
- Offer the possibility to test sensors and assemblies in EuXFEL beam
 - Dedicated limited amount of hours allocated by scientific instruments for Detector Development
 - ► Need to prioritize in agreement with the scientific instruments
 - Contact us (but 9 to 12 months in advance)!
 - No more time available for Feb-June 2024

Third port of SASE2 approved for construction in 2025

Hutch and beam transport tunnel approved, installation in the 2025 long shutdown until early 2027

European XFEL

Conclusions

- European XFEL is starting its detector development
- Requirements are being defined
 - Photon energy up to 30 keV
 - $\sim 5 \times 10^3$ photons/pixels dynamic range
 - MHz-level burst frame rate
 - Pixel size ~100 µm
- Put in place collaborations with high Z experts
 - Strengthen collaboration with more experienced groups
 - Allow us to build experience
- We offer to collaborate on beam time
 - Limited amount of hours for now
 - Possibly more in the future

Backup

European XFEL

Facility developments: SCU system

- Electron beam energy > 16.5 GeV
- Estimated range of photons per pulse achievable by tuning the SCU afterburner to amplify the output of the fundamental of the PMUs
 - the bunching of the second harmonic of the PMUs
- Peak flux ~100 x higher than HE diffraction-limited SR sources

Large dynamic range detectors needed!

Normalized emittance 0.4 mm mrad Initial energy spread Current

The simulations do not consider wake fields and tapering. A flat top 3 fs bunch is considered

3 MeV

5kA

Slide courtesy of Sara Casalbuoni and UND group of EuXFEL