Improving the efficiency and quality of 3D seismic imaging applying ML algorithms

Mohammad Safari, Eric Verschuur

ENGAGE conference,

The European Synchrotron Radiation Facility (ESRF), Grenoble, France Thursday, June 19, 2025

Outline

- Attenuation effects
- Quality factor
- Including Q-compensation in FWM & JMI
- Including Q-estimation in FWM & JMI
- Conclusions

Outline

- Attenuation effects
- Quality factor
- Including Q-compensation in FWM & JMI
- Including Q-estimation in FWM & JMI
- Conclusions

Attenuation effects

Heterogeneous properties of the Earth

- geological structures
- soil properties
- fluid or gas distribution

Effects on the seismic wavefield

- wave scattering
- absorption
- transmission losses

Attenuation of seismic signals

Understanding and considering these variations is crucial for accurate modeling and interpretation of seismic data.

Types of attenuation effects

Anelastic Attenuation (Q): This type of attenuation is influenced by the presence of fluids within the rock and the degree of saturation it exhibits.

Elastic Attenuation: Elastic attenuation is determined by the scattering of energy at lithology boundaries and the effects of thin-layering.

Outline

- Attenuation effects
- Quality factor
- Including Q-compensation in FWM & JMI
- Including Q-estimation in FWM & JMI
- Conclusions

Quality factor

Quality factor

Q-estimation Methods

Centroid frequency shift (CFS) method developed by (Quan and Harris, 1997)

Peak frequency shift (PFS) method (Zhang and Ulrych, 2002)

Outline

- Attenuation effects
- Quality factor
- Including Q-compensation in FWM & JMI
- Including Q-estimation in FWM & JMI
- Conclusions

Joint Migration Inversion

Full Wavefield Modeling

FWMod is an iterative solution of the wave equation by one-way steps:

- up/downward propagation using the background velocity model
- up/down scattering of the wavefield using the image

Reflectivity model

1500

Lateral location [m]

2000

2500

3000

5

0

-5

Full Wavefield Modeling

FWMod is an iterative solution of the wave equation by one-way steps:

- up/downward propagation using the background velocity model
- up/down scattering of the wavefield using the image

Reflectivity model

2000

2000

Lateral location [m]

2500

2500

3000

3000

5

0

-5

Including Q effects in FWM & JMI

The Q-effects are part of the propagatorPutting Q effects into the W operators

The Futterman Q model in 2D

We can take the attenuation factor (A) as the inverse of the Q value where A is defined as O^{-1} .

The Futterman model in FWMod

∜FWMod

- > one-way propagators
- \succ based on the phase shift operators

$$W(k_{x},\omega) = e^{-jk_{z}\Delta z}$$

$$k_{z} = \sqrt{\omega^{2}s^{2} - k_{x}^{2}}$$

$$W(k_{x},\omega) = e^{-j(\omega)}\left(s\left(1 - \frac{A}{\pi}\ln\left(\frac{\omega}{\omega_{0}}\right)\right)\left(1 + \frac{iA}{2}\right)$$

2

 $-k_{\chi}^{2}\Delta z$

Synthetic model

FWM results

Q-FWM results (given Q model)

Outline

- Attenuation effects
- Quality factor
- Including Q-compensation in FWM & JMI
- Including Q-estimation in FWM & JMI
- Conclusions

Including Q effects in FWM

Estimate Q-values

Tomographic assessment and updating

$$W(k_{\chi},\omega) = e^{-j\sqrt{\omega^2 \left(s\left(1-\frac{A}{\pi}\ln\left(\frac{\omega}{\omega_0}\right)\right)\left(1+\frac{iA}{2}\right)\right)^2 - k_{\chi}^2}\Delta z}$$

$$\Delta W_j^{-}(z_m, z_n) \approx \left[\frac{\partial \vec{W}^{-}}{\partial A}\right]_{A_{old}} \Delta A(x_j, z_n) = \vec{L}_{0j}(z_m, z_n) \Delta A(x_j, z_n),$$

$$\begin{split} \vec{L}_{0j}^{-}(z_m, z_n) &\approx \mathcal{F}_x^{-1} \left[-j\Delta z \left[\frac{k_0^2}{k_z} (1 - \frac{A}{\pi} \ln \frac{\omega}{\omega_0}) \left(1 + \frac{iA}{2} \right)^2 \left(\frac{\ln(\omega/\omega_0)}{\pi} \right)^2 \right. \\ &\left. + \left(\frac{i}{2} \right) \left(1 + \frac{iA}{2} \right) \left(1 - \frac{A}{\pi} \ln \frac{\omega}{\omega_0} \right)^2 \right]_{A_{old}} e^{-jk_z \Delta z} e^{-jk_x x_j} \end{split}$$

Perturbation Theory

linear relationship between the propagation operators and the attenuation model

Q-FWM workflow

FWM results

Q-FWM results

Constraining Q-Estimation Using Random Forest Regression

Background Challenge

- Q-estimation is difficult due to crosstalk with reflectivity

- Traditional methods (Hessian, deep learning) are effective but computationally expensive

Why RF?

- Efficient and avoids overfitting

- Captures nonlinear

relationships

- Links Q to physical parameters theory

Our Approach

Applied Random Forest Regression (RF) to constrain iterative Q-updates
RF is an ensemble machine learning method using multiple decision trees

Machin learning constarainted Q-FWM workflow

Q-FWM results

Constrained Q-FWM results

Synthetic test – Q-FWM+RF

Log10(ObjFun) up to iter: 200

FWM Result

Q-FWM result – Primaries only

Q-FWM result – Total Wavefield

Q-FWM – field data test

Q-JMI workflow

Synthetic test - JMI

Synthetic test – Q-JMI

Synthetic test – Q-JMI+RF

Outline

- Attenuation effects
- Quality factor
- Including Q-compensation in FWM & JMI
- Including Q-estimation in FWM & JMI
- Conclusions

Conclusions

- The JMI and the FWM methodologies are highly effective in accommodating Q simply by integrating the Q into the propagation operator.
- We presented a method for directly estimating the Q by utilizing full waveform matching in FWM and JMI.
- It was shown that Random Forest regression could be used as a constraint for mitigating cross-talk challenges.

Thank you for your attention!

Acknowledgement

This work is carried out within the Delphi Consortium and is co-funded by the European Union's Horizon 2020 Research and Innovation Programme under the Marie Sklodowska-Curie COFUND scheme with grant agreement No. 101034267 (ENGAGE).

