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Joint Migration Inversion (JMI) is an 
innovative geophysical solution that 
ingeniously integrates the dual core 
processes of velocity model 
construction and seismic imaging 
into a unified algorithmic framework 
(Verschuur et al., 2016; Sun et al., 
2020).

JMI integrates velocity modeling 
with the imaging process to jointly 
optimize velocity and reflectivity, 
whereas Full Waveform Inversion 
(FWI) focuses on directly inverting 
subsurface properties from full 
waveform data.
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Closed-loop process: iterate until modeled 
datafits the measurements

In terms of computation  
process, JMI is divided 
into reflectivity update 
and velocity (slowness) 
update, and the two are 
similar in algorithm 
process.

In practice, JMI adopts a 
unique migration 
technique known as Full 
Wavefield Migration 
(FWM) (Berkhout, 2014b).
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*FWMod faces increased computational and memory demands in 2-D and 
3-D, leading to high costs and reliance on computation resources.

For the reflectivity update (Staal, 2015):
1. Update wavefelds within the chosen frequency band, 

based on the most recent model estimates (one 
roundtrip) and determine the new residual.

2. Calculate and optimise update direction for reflectivity 
(one roundtrip).

3. Calculate the linearised wavefield perturbation 
associated to the update direction, within the chosen 
frequency band (one roundtrip).

4. Calculate scaling parameter for the update direction 
and finally update the reflectivity model.

FWM takes a model-driven approach to 
estimating its modelling operators, basing 
them on a reflectivity and a velocity model 
through a Full Wavefield Modelling (FWMod) 
algorithm (Berkhout, 2014a).
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What is program performance optimization?

Program performance optimization is the process of modifying software so it runs more efficiently: 
using less time, memory, power, or other resources, while preserving its intended functionality. 
(en.wikipedia.org)

What are the optimization methods?

➢ Software level:
➢ Reduce the amount of computation (data)
➢ Use a fast convergence method
➢ Accelerate correlation computations using the acceleration library (e.g. cuFFT)

➢ Hardware level:
➢ Use CPUs with the latest architecture
➢ Use GPUs for computation

Misunderstanding：
 performance optimization ≠ improve accuracy / resolution

The efficiency of computation is increased as much as possible while ensuring the 
accuracy and resolution are close to the numerical JMI.
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• To tackle FWMod 
computational load, we 
utilize separate frequency 
processing: Using direct 
computation for some 
frequencies and frequency 
interpolation.

• We use a trained neural 
network model to assist JMI 
in the modeling part: model 
few frequencies and 
interpolate the rest via 
Machine Learning.

*Traditional FWMod method use complete wavefield and source data by default, while the AI-driven 
FWMod method uses sparse data as input.
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• It does not relate to field data, 
only FWMod data.

• Subset of shots need to be fully 
modeled for training.
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Neural Network Design: Attention U-Net

We use an adapted AU-Net architecture (Oktay et al. 2018), a refined deep convolutional neural network that 
incorporates attention gates to enhance reconstruction precision and robustness by focusing on key features. 
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2-D Lens-shaped Model 
(Staal, 2015)

2-D Salt Model
(Berkhout and Verschuur, 2006)

2-D Marmousi Model
(Brougois et al., 1990)

nx, dx, nz, dz 104, 20, 51, 10 248, 20, 126, 10 248, 20, 170, 10

nt, dt 256, 0.004 300, 0.008 300, 0.008

fmin, fmax, f0 1, 40, 20 1, 40, 15 1, 40, 15

nsrc 104 248 248

Wavelet form The Ricker wavelet The Ricker wavelet The Ricker wavelet
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FWMod
（Dataset Generation）

1. Generate complete 
wavefield data in frequency 
domain;

2. Randomly select 50% of the 
frequencies to delete, and 
retain the remaining 
frequencies to form sparse 
data;

3. Defined the complete data 
as labels.

4. Pre-processing including 
normalization via the 
hyperbolic tangent function.

3-D (nx, nf, 2 channels) samples 
(1 - 40 Hz), ultimately generating a 
total of 10,000 samples.

Training data

Ground truth



Dataset Preparation: 2-D Salt Model
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FWMod
（Dataset Generation）

1. Generate complete 
wavefield data in frequency 
domain;

2. Randomly select 50% of the 
frequencies to delete, and 
retain the remaining 
frequencies to form sparse 
data;

3. Defined the complete data 
as labels.

4. Pre-processing including 
normalization via the 
hyperbolic tangent function.

3-D (nx, nf, 2 channels) samples 
(1 - 40 Hz), ultimately generating a 
total of 10,000 samples.

Training data

Ground truth



Dataset Preparation: 2-D Marmousi Model
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FWMod
（Dataset Generation）

1. Generate complete 
wavefield data in frequency 
domain;

2. Randomly select 50% of the 
frequencies to delete, and 
retain the remaining 
frequencies to form sparse 
data;

3. Defined the complete data 
as labels.

4. Pre-processing including 
normalization via the 
hyperbolic tangent function.

3-D (nx, nf, 2 channels) samples 
(1 - 40 Hz), ultimately generating a 
total of 10,000 samples.

Training data

Ground truth
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SimEA (hosting on Cyclone)
Bespoke system created for large projects

The NN model is trained (data parallel) on 
10,000 samples (each velocity model) using 
one GPU node (4 GPUs):
• 2x 24-core sockets with Intel Xeon Gold 6330
• 4x NVIDIA A100-SXM4 40GB GPUs
• 512 GB memory
Building NN model with Keras framework 
(TensorFlow backend) 

Cyclone HPC*: a hybrid CPU and GPU system

*https://hpcf.cyi.ac.cy/
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Metrics To Evaluate Machine Learning Model: In addition to Mean Absolute Error  (L1 Loss), 
the quality of predicted data is evaluated by Structural Similarity Index (SSIM) and Peak Signal-
to-Noise Ratio (PSNR), which can provide an objective evaluation of data reconstruction quality 
and similarity. 

SSIM

It is a measure of the similarity 
between two images based on 
luminance, contrast, and structure.

L1 Loss

This gives an average measure 
of the absolute difference 
between the two images.

PSNR

It is a metric used to measure the quality of 
image reconstruction by comparing the 
maximum possible value of the image to the 
mean squared error between the original and 
reconstructed images.



Preparation before Training
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Hyper-params Settings Notes

Epochs 200

Batch 32 Global batch size: 128

Learning Rate 0.01 ReduceLR

Validation Split Rate 0.2 80% for training; 20% for validating

Scheduler & Optimizer Settings Notes

Reduce Learning Rate Monitor: min validation MAE Min Learning Rate: 0.00001

Early Stopping Monitor: min validation MAE Patience: 10 Epochs

Training data shuffle

Adam Default settings from TensorFlow

Loss Function Settings Notes

Mix Loss 0.5 * loss in time domain + 0.5 * loss 
in freq. domain

Time loss + Freq. loss

𝑀𝑖𝑥𝑀𝐴𝐸 = 0.5 ∗
1

𝑛
෍

𝑖=1

𝑛

𝑦𝑡𝑟𝑢𝑒,𝑖 − 𝑦𝑝𝑟𝑒𝑑,𝑖 + 0.5 ∗
1

𝑛
෍

𝑖=1

𝑛

𝑖𝑓𝑓𝑡(𝑦𝑡𝑟𝑢𝑒,𝑖) − 𝑖𝑓𝑓𝑡(𝑦𝑝𝑟𝑒𝑑,𝑖)
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Training Results and Evaluation
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The training took 30 epochs (14 seconds) to complete.

0.00056

0.9976 55.0958
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Real Part (2-D lens-shaped model )

Imag. Part (2-D lens-shaped model)

Testing Dataset: AvgMAE: 6.7011e-04 - AvgSSIM: 0.9968 - AvgPSNR: 54.0424



Training Results and Evaluation
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The training took 36 epochs (252 seconds) to complete.

0.00072

0.9984 52.4360



Training Results and Evaluation
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Real Part (2-D Salt Model)

Imag. Part (2-D Salt Model)

Testing Dataset: AvgMAE: 6.8312e-04 - AvgSSIM: 0.9986 - AvgPSNR: 52.7893



Training Results and Evaluation
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The training took 67 epochs (469 seconds) to complete.

0.0033

0.9727 37.7154



Training Results and Evaluation
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Real Part (2-D Marmousi Model)

Imag. Part (2-D Marmousi Model)

Testing Dataset: AvgMAE: 0.0028 - AvgSSIM: 0.9765 - AvgPSNR: 39.5327
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Preparation before Inference

DLPack

1x NVIDIA A100-
SXM4 40GB GPU
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AI-improved JMI Traditional JMI
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AI-improved JMI Traditional JMI
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AI-improved JMI Traditional JMI
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Numerical Method
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Numerical Experiment for Reflectivity + Velocity Update 
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Traditional JMI AI-improved JMI



Outline

• Brief Introduction

• Methodology

• Experiments and Results

• Conclusion and Future Works



Conclusion
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1. We introduced an AI-based interpolation acceleration kernel that uses  an 
Attention U-Net to reconstruct full-band wavefields from sparse frequency 
inputs, reducing computational costs in FWMod.

2. Demonstrated high reconstruction quality on 2-D models (Lens-shaped, Salt, 
Marmousi) with low L1 loss and high SSIM / PSNR using 50% of frequencies.

3. Achieved a 1.3 ~ 1.8x speed-up in the reflection-only update stage of JMI by 
using AI interpolation, with nearly identical convergence compared to full-
frequency numerical modeling.

4. With a similar convergence effect, the AI-improved JMI will reduce the time 
required for the entire process, and is expected to achieve better performance 
in large-scale 3-D modeling.
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Validation on field datasetsExtension to 3-D geologies

Integration with HPC techniques



34

Acknowledgements

This project is carried out within the Cyprus Institute and 
the Delphi Consortium (TU Delft). 

This project has received funding from the European 
Union’s Horizon 2020 research and innovation programme 
under the Marie Skłodowska-Curie grant agreement No 
101034267.

      
          



35

References
1. Berkhout, A. J. (2014). An outlook on the future of seismic imaging, Part I: forward and reverse modelling. 

Geophysical Prospecting, 62(5), 911-930.

2. Berkhout, A. J. (2014). An outlook on the future of seismic imaging, Part II: Full‐Wavefield 
Migration. Geophysical Prospecting, 62(5), 931-949.

3. Berkhout, A. J., & Verschuur, D. J. (2008). Imaging of multiple reflections.

4. Brougois, A., Bourget, M., Lailly, P., Poulet, M., Ricarte, P., & Versteeg, R. (1990, May). Marmousi, model and 
data. In EAEG workshop-practical aspects of seismic data inversion (pp. cp-108). European Association of 
Geoscientists & Engineers.

5. Oktay, O., Schlemper, J., Folgoc, L. L., Lee, M., Heinrich, M., Misawa, K., ... & Rueckert, D. (2018). Attention 
u-net: Learning where to look for the pancreas. arXiv preprint arXiv:1804.03999.

6. Staal, X. R. (2015). Combined imaging and velocity estimation by joint migration inversion. Technische 
Universiteit Delft (cit. on p. 43).

7. Sun, Y., Kim, Y. S., Qu, S., & Verschuur, E. (2020). Joint migration inversion: Features and challenges. Journal 
of Geophysics and Engineering, 17(3), 525-538.

8. Verschuur, D. J., Staal, X. R., & Berkhout, A. J. (2016). Joint migration inversion: Simultaneous determination 
of velocity fields and depth images using all orders of scattering. The Leading Edge, 35(12), 1037-1046.



36

Achievements
1. Zhao J., Akram N., Savva N., Verschuur E. An Accelerating Method for 2-D Full Wavefield 

Modeling Based on Deep Learning, presented at  International Workshop on “Computational 
Modeling of Molecular Systems: From Atoms to the In-silico Design of Materials” , The Cyprus 
Institute, Cyprus, 20 - 22 May 2024.

2. Zhao J., Akram N., Savva N., Verschuur E. Accelerating 2-D Full Wavefield Forward Modeling via 
Frequency Interpolation with a Tiny Attention U-Net Based Model, presented at Eighth EAGE High 
Performance Computing Workshop, KAUST, Saudi Arabia, 16 - 18 September 2024.

3. Zhao J., Akram N., Savva N., Verschuur E. Accelerating 2-D Joint Migration Inversion via 
Frequency Interpolation in Full Wavefield Migration using Attention U-Net Neural Network, 
presented at Digitalization in Geoscience Symposium (GEO4.0), Al Khobar, Saudi Arabia, 21 - 24 
October 2024.

4. Zhao J., Akram N., Savva N., Verschuur E. AI-Driven Seismic Wavefield Reconstruction via 
Frequency Interpolation for Efficient Joint Migration Inversion, presented at 86th EAGE Annual 
Conference & Exhibition, Toulouse, France, 2 - 5 June 2025.



Thank you for listening ! 
Q & A


	幻灯片 1: AI-Driven Seismic Frequency-Domain Wavefield Reconstruction For Efficient 2-D Seismic Imaging
	幻灯片 2: Self Introduction
	幻灯片 3: Outline
	幻灯片 4: Introduction to Joint Migration Inversion
	幻灯片 5: Introduction to Joint Migration Inversion
	幻灯片 6: Introduction to Full Wavefield Modeling 
	幻灯片 7: Our Motivation and Ideas
	幻灯片 8: Our Motivation and Ideas
	幻灯片 9: Outline
	幻灯片 10: Our Acceleration Kernel Overview
	幻灯片 11
	幻灯片 12: Introduction to the Synthetic Data
	幻灯片 13: Dataset Preparation: 2-D Lens-shaped Model 
	幻灯片 14: Dataset Preparation: 2-D Salt Model
	幻灯片 15: Dataset Preparation: 2-D Marmousi Model
	幻灯片 16: Preparation before Training
	幻灯片 17: Preparation before Training
	幻灯片 18: Preparation before Training
	幻灯片 19: Outline
	幻灯片 20: Training Results and Evaluation
	幻灯片 21: Training Results and Evaluation
	幻灯片 22: Training Results and Evaluation
	幻灯片 23: Training Results and Evaluation
	幻灯片 24: Training Results and Evaluation
	幻灯片 25: Training Results and Evaluation
	幻灯片 26: Preparation before Inference
	幻灯片 27: Numerical Experiment for Reflectivity Update 
	幻灯片 28: Numerical Experiment for Reflectivity Update 
	幻灯片 29: Numerical Experiment for Reflectivity Update 
	幻灯片 30: Numerical Experiment for Reflectivity + Velocity Update 
	幻灯片 31: Outline
	幻灯片 32: Conclusion
	幻灯片 33: Future Works
	幻灯片 34: Acknowledgements
	幻灯片 35: References
	幻灯片 36: Achievements
	幻灯片 37: Thank you for listening ! 

