

H2020 Engage Conference:

Detector Simulation and Jet Clustering for HL-LHC with Quantum Computing

Saverio Monaco

June 19, 2025

Status of the PhD

Progress Overview

Supervisor: Kerstin Borras

Title: Development of Quantum Computing Models for Calorimeter Simulations and Jet-Clustering in Particle Physics

Supervisor: Kerstin Borras

- Title: Development of Quantum Computing Models for Calorimeter Simulations and Jet-Clustering in Particle Physics
 - **03/2024** 03/2027 (?)

Progress:

Title: Development of Quantum Computing Models for Calorimeter Simulations and Jet-Clustering in Particle Physics

Title: Development of Quantum Computing Models for Calorimeter Simulations and Jet-Clustering in Particle Physics

Title: Development of Quantum Computing Models for Calorimeter Simulations and Jet-Clustering in Particle Physics

пп

Motivation

A brief motivation for Quantum Models in High Energy Physics.

Tom's Hardware article

IBM is building a large-scale quantum computer that 'would require the memory of more than a quindecillion of the world's most powerful supercomputers' to simulate

By Mark Tyson published 3 days ago

That's

Tom's Hardware article

IBM is building a large-scale quantum computer that 'would require the memory of more than a quindecillion of the world's most powerful supercomputers' to simulate

By Mark Tyson published 3 days ago

That's

10⁴⁸

Tom's Hardware article

IBM is building a large-scale quantum computer that 'would require the memory of more than a quindecillion of the world's most powerful supercomputers' to simulate

By Mark Tyson published 3 days ago

That's

⁼ 10⁴⁸

Representation of a quantum state

- A quantum state of n qubits is represented by a complex vector of 2^n amplitudes.
- On a classical machine, each amplitude (a complex number) needs:

32 bytes for the real part + 32 bytes for the imaginary part = 64 bytes

• Hence to represent a state of n qubits, we need 2^n amplitudes, which amounts to $64 \cdot 2^n$ bytes

IBM Starling (2029) - 200 (logical) qubits

- A quantum state of 200 qubits is represented by a complex vector of 2^{200} amplitudes.
- On a classical machine, each amplitude (a complex number) needs:
 32 bytes for the real part + 32 bytes for the imaginary part = 64 bytes
- Hence to represent a state of 200 qubits, we need 2^{200} amplitudes, which amounts to $64\cdot2^{200}$ bytes $\sim10^{43}$ EB

IBM Starling (2029) - 200 (logical) qubits

- A quantum state of 200 qubits is represented by a complex vector of 2²⁰⁰ amplitudes.
- On a classical machine, each amplitude (a complex number) needs:
 32 bytes for the real part + 32 bytes for the imaginary part = 64 bytes
- Hence to represent a state of 200 qubits, we need 2^{200} amplitudes, which amounts to $64\cdot2^{200}$ bytes $\sim10^{43}$ EB

El Captain (Current best supercomputer): $\sim 10^{-2}$ EB

$$rac{\text{"Memory" IBM Starling}}{\text{"Memory" El Captain}} = rac{10^{43} \text{ EB}}{10^{-2} \text{ EB}} = 10^{45}$$

 $|\psi
angle
ightarrow \{0,1\}^n$ \rightarrow

 $|\psi
angle
ightarrow \{0,1\}^n$ wavefunction: impossible to describe classically for large *n*

 $|\psi
angle
ightarrow \{0,1\}^n$ $\otimes n \rightarrow$ output / measurement bitstrings of *n* qubits

 $|\psi
angle
ightarrow \{0,1\}^n$

collapse of the wavefunction

Argument #1: Complexity of HEP datasets

Potential Advantages:

- Variational models
 - Faster solution times
 - Improved generalization capabilities ²
 - Reduced number of required parameters

Standard Quantum Algorithms

 Access to a family of different algorithms with different scalings:
 ex: Shor: Exponential → Polynomial

Argument #2: HEP datasets are *quantum* (in a way)

Example: Detector Dataset

A particle shower can be seen as the collapse of a complex wavefunction which might be best described through a quantum state.

Detector Simulation

How to generate images from quantumness

Not a trivial task!

- Preliminary study using simplified models
- Understand advantages and challenges

Output: Single measurement of the wavefunction

 Fast generations
 Always hard to simulate classically
 Sensitive to noise
 Black and white images

Output: Single measurement of the wavefunction

 Fast generations
 Always hard to simulate classically
 Sensitive to noise
 Black and white images

Continuous Architectures

- Slow generations
 Generally classically simulable¹
- Robust to noise
- Grayscale images

Hybrid Architectures

Continuous Architectures

Output: Single measurement of the wavefunction

 Fast generations
 Always hard to simulate classically
 Sensitive to noise
 Black and white images

- Slow generations
 Generally classically simulable¹
- Robust to noise
- Grayscale images

Detector Simulation Types of Quantum Generative Models⁴

Discrete Architectures

DARBM $z_r + p(\xi, \chi|z_r, e)$ $\xi - \frac{1}{\chi} - \frac{1}{\chi} - \frac{1}{\chi}$

Continuous Architectures

Output: Single measurement of the wavefunction

 Fast generations
 Always hard to simulate classically
 Sensitive to noise
 Black and white images

- Slow generations
 Generally classically simulable¹
- Robust to noise
- Grayscale images

Detector Simulation Types of Quantum Generative Models⁴

Discrete Architectures

Hybrid Architectures

Calorimeter images \equiv

Continuous Architectures

Output: Single measurement of the wavefunction

 Fast generations
 Always hard to simulate classically
 Sensitive to noise

Black and white images

Output: Multiple measurements of the wavefunction

Slow generationsGenerally classically

simulable¹

- Robust to noise
- Grayscale images

• Generation of *N* pixels requires *N* qubits

• Generation of *N* pixels requires *N* qubits

Quantum State Preparation

• Implement randomness using *RY* rotations

• Generation of *N* pixels requires *N* qubits

- **Quantum State Preparation**
 - Implement randomness using *RY* rotations

- 1. Generate *M* images
- 2. Evaluate the MMD loss
- 3. Update the parameters $\theta_i \rightarrow \theta_{i+1}$

M images (epoch 0)

- 1. Generate *M* images
- 2. Evaluate the MMD loss
- 3. Update the parameters $\theta_i \rightarrow \theta_{i+1}$

M images (epoch 20)

- 1. Generate *M* images
- 2. Evaluate the MMD loss
- 3. Update the parameters $\theta_i \rightarrow \theta_{i+1}$

M images (epoch 40)

- 1. Generate *M* images
- 2. Evaluate the MMD loss
- 3. Update the parameters $\theta_i \rightarrow \theta_{i+1}$

M images (epoch 60)

- 1. Generate *M* images
- 2. Evaluate the MMD loss
- 3. Update the parameters $\theta_i \rightarrow \theta_{i+1}$

M images (epoch 80)

0.0

ò

Epoch

300 Ó

Epoch

/26

Pixel-wise Energy distributions

Combined Energy distribution

Energy sum

Energy average

Correlations

Done:

- Implementation
 - Implementation in both
 Pennylane and *Qiskit*
 - GPU support
- In depth study of Hyperparameters:
 - Number of qubits
 - Ansatz (State Preparation + Trainable)
 - Loss function
 - Data preprocessing
 - Optimizer

In progress:

- Study under different levels of simualted noise
- Deployment on IBM machines (superconductng)
- Deployment on IQM machines (superconducting)
- Deployment on eleQtron machines (ion-based)
- Comparison with classical counterpart

Hybrid Architectures

Continuous Architectures

Output: Single measurement of the wavefunction

- Fast generations
 Always hard to simulate classically
 Sensitive to noise
 - Black and white images

- Slow generations
 Generally classically simulable¹
 - Robust to noise
 - Grayscale images

Jet Clustering

How to cluster quantumly

Classical algorithm (anti-k_T)

combines particles in order of decreasing transverse momentum, computing the pairwise distance measures between all particles ($\mathcal{O}(N^2)$)

Quantum algorithm³

Quantum subroutines

- 1. Computing distances between all particles
- 2. Seach for maxima in the unsorted list of resulting distances

(Theoretical exponential speed-up)

- [1] Angrisani et al.: *Classically estimating observables of noiseless quantum circuits*, arXiv preprint (2024)
- [2] Caro et al.: *Generalization in quantum machine learning from few training data*, Nature Communications (2022)
- [3] De Lejarza et al.: *Quantum clustering and jet reconstruction at the LHC*, PhysRevD (2022)
- [4] Riofrio et al.: *A Characterization of Quantum Generative Models*, ACM Transactions on Quantum Computing (2024)
- [5] Toledo-Marin et al.: Conditioned quantum-assisted deep generative surrogate for particle-calorimeter interactions, arXiv preprint (2024)

Contact

Saverio Monaco

≥ saverio.monaco@desy.de

ENGAGE has received funding from the European Union's Horizon 2020 Research and Innovation Programme under the Marie Skłodowska-Curie Grant Agreement No. 101034267.