Nucleon electromagnetic form factors using N_f=2+1+1 twisted-mass fermions at physical point

Constantia Alexandrou, Simone Bacchio, Giannis Koutsou, Gregoris Spanoudes, Bhavna Prasad,

Lattice gauge theories: Introduction

- Continuum field theories: Infinite DOF.
- Perturbative regularization:Fails at low energies e.g. QCD.
- ➤ Discretize the space-time: Replace continuum with a grid of lattice sites with 1/a as UV cutoff.

Lattice gauge theories: Introduction

- Continuum field theories: Infinite DOF.
- Perturbative regularization:Fails at low energies e.g. QCD.
- Discretize the space-time: Replace continuum with a grid of lattice sites with 1/a as UV cutoff.

Lattice gauge theories: Introduction

- Continuum field theories: Infinite DOF.
- Perturbative regularization: Fails at low energies e.g. QCD.
- ➤ Discretize the space-time: Replace continuum with a grid of lattice sites with 1/a as UV cutoff.

In this formulation the expectation value of an observable (without fermions) is given by:

$$\langle O \rangle = \frac{1}{\mathcal{Z}} \int D[U]O(U)e^{-S(U)}$$
 $\mathcal{Z} = \int D[U]e^{-S(U)}$

Generate conjugate momentum field.

$$\langle O \rangle = \frac{1}{\mathcal{Z}'} \int D[U] D[P] O(U) e^{-(P^2/2 + S(U))} \underset{\mathsf{H}}{\overset{\wedge}{\bigcirc}}$$

- > Generate conjugate momentum field.
- > Use Hamiltonian dynamics for updates.
- > Update using integrator (e.g. leapfrog).

$$\langle O \rangle = \frac{1}{\mathcal{Z}'} \int D[U] D[P] O(U) e^{-(P^2/2 + S(U))}$$

$$\dot{P} = -\frac{\partial H}{\partial U}$$

$$\dot{U} = \frac{\partial H}{\partial P}$$

- > Generate conjugate momentum field.
- > Use Hamiltonian dynamics for updates.
- Update using integrator (e.g. leapfrog).
- ightharpoonup Accept/Reject step: Accepted with exp(- Δ H).

$$\langle O \rangle = \frac{1}{\mathcal{Z}'} \int D[U]D[P]O(U)e^{-(P^2/2 + S(U))}$$

$$\dot{P} = -\frac{\partial H}{\partial U}$$

$$\dot{U} = \frac{\partial H}{\partial P}$$

- > Generate conjugate momentum field.
- > Use Hamiltonian dynamics for updates.
- > Update using integrator (e.g. leapfrog).
- \triangleright Accept/Reject step: Accepted with exp(- \triangle H).

$$\langle O \rangle = \frac{1}{\mathcal{Z}'} \int D[U]D[P]O(U)e^{-(P^2/2 + S(U))}$$

$$\dot{P} = -\frac{\partial H}{\partial U}$$

$$\dot{U} = \frac{\partial H}{\partial P}$$

Initial field configuration

- Generate conjugate momentum field.
- > Use Hamiltonian dynamics for updates.
- > Update using integrator (e.g. leapfrog).
- \triangleright Accept/Reject step: Accepted with exp(- \triangle H).

$$\langle O \rangle = \frac{1}{\mathcal{Z}'} \int D[U]D[P]O(U)e^{-(P^2/2 + S(U))}$$

$$\dot{P} = -\frac{\partial H}{\partial U}$$

$$\dot{U} = \frac{\partial H}{\partial P}$$

- Generate conjugate momentum field.
- > Use Hamiltonian dynamics for updates.
- > Update using integrator (e.g. leapfrog).
- ightharpoonup Accept/Reject step: Accepted with exp(- Δ H).

$$\langle O \rangle = \frac{1}{\mathcal{Z}'} \int D[U]D[P]O(U)e^{-(P^2/2 + S(U))}$$

$$\dot{P} = -\frac{\partial H}{\partial U}$$

$$\dot{U} = \frac{\partial H}{\partial P}$$

Continuum limit

Continuum limit needed to extract physical values.

Continuum limit and lattice setup

Continuum limit needed to extract physical values.

Keep physical volume (aN)^D constant (D=2 above).

Continuum limit and lattice setup

- Continuum limit needed to extract physical values.
- We use three ensembles with $N_f=2+1+1$ from ETMC.

Extrapolate to the continuum a → 0

Keep physical volume (aN) ^D cons	stant (D=2 above).
---	--------------------

Ensemble	$(\frac{L}{a})^3 \times (\frac{T}{a})$	a [fm]	$m_{\pi} \; [\text{MeV}]$	$m_{\pi}L$
cB211.072.64	$64^{3} \times 128$	0.07957(13)	140.2(2)	3.62
cC211.060.80	$80^{3} \times 160$	0.06821(13)	136.7(2)	3.78
cD211.054.96	$96^3 \times 192$	0.05692(12)	140.8(2)	3.90

Continuum limit and lattice setup

- Continuum limit needed to extract physical values.
- We use three ensembles with $N_f=2+1+1$ from ETMC.

Extrapolate to the continuum a → 0

Keep	physical	volume	(aN) ^D	constant ((D=2 above).	

Ensemble	$(\frac{L}{a})^3 \times (\frac{T}{a})$	a [fm]	$m_{\pi} \; [\text{MeV}]$	$m_{\pi}L$
cB211.072.64	$64^3 \times 128$	0.07957(13)	140.2(2)	3.62
cC211.060.80	$80^{3} \times 160$	0.06821(13)	136.7(2)	3.78
cD211.054.96	$96^3 \times 192$	0.05692(12)	140.8(2)	3.90

➤ We use clover improved, twisted-mass fermions (O(a) improved).

$$C(t) = \sum_{\vec{x}_s} \langle \Omega | \chi(\vec{x}_s, t_s) \bar{\chi}(\vec{x}_0, t_0) | \Omega \rangle$$

$$C(t) = \sum_{\vec{x}_s} \langle \Omega | \chi(\vec{x}_s, t_s) \bar{\chi}(\vec{x}_0, t_0) | \Omega \rangle$$

$$C(\Gamma_0, \vec{0}, t) = \sum_n c_n(\vec{0}) e^{-E_n(\vec{0})t_s}$$

$$C(t) = \sum_{\vec{x}_s} \langle \Omega | \chi(\vec{x}_s, t_s) \bar{\chi}(\vec{x}_0, t_0) | \Omega \rangle$$

$$C(\Gamma_0, \vec{0}, t) = \sum_{n} c_n(\vec{0}) e^{-E_n(\vec{0})t_s}$$

$$C(t) = \sum_{\vec{x}_s} \langle \Omega | \chi(\vec{x}_s, t_s) \bar{\chi}(\vec{x}_0, t_0) | \Omega \rangle$$

$$C(\Gamma_0, \vec{0}, t) = \sum_{m} c_n(\vec{0}) e^{-E_n(\vec{0})t_s}$$

$$C(\Gamma_0, \vec{0}, t) = c_0(\vec{0})e^{-E_0(\vec{0})t_s} + \dots$$

$$C(t) = \sum_{\vec{x}_s} \langle \Omega | \chi(\vec{x}_s, t_s) \bar{\chi}(\vec{x}_0, t_0) | \Omega \rangle$$

$$C(\Gamma_0, \vec{0}, t) = \sum_n c_n(\vec{0}) e^{-E_n(\vec{0})t_s}$$

$$C(\Gamma_0, \vec{0}, t) = c_0(\vec{0})e^{-E_0(\vec{0})t_s} + c_1(\vec{0})e^{-E_1(\vec{0})t_s} + \dots$$

$$C(t) = \sum_{\vec{x}_s} \langle \Omega | \chi(\vec{x}_s, t_s) \bar{\chi}(\vec{x}_0, t_0) | \Omega \rangle$$

$$C(\Gamma_0, \vec{0}, t) = \sum_{n} c_n(\vec{0}) e^{-E_n(\vec{0})t_s}$$

$$C(\Gamma_0, \vec{0}, t) = c_0(\vec{0})e^{-E_0(\vec{0})t_s} + \frac{c_1(\vec{0})e^{-E_1(\vec{0})t_s} + c_2(\vec{0})e^{-E_2(\vec{0})t_s} + \cdots$$

> On lattice, the nucleon matrix element is accessed using two point and three point correlation functions.

- > On lattice, the nucleon matrix element is accessed using two point and three point correlation functions.
- > The two point function is given by:

$$C(\Gamma_0, \vec{p}; t_s, t_0) = \sum_{\vec{x}_s} e^{-i(\vec{x}_s - \vec{x}_0) \cdot \vec{p}} \times$$
$$\operatorname{Tr} \left[\Gamma_0 \langle \chi_N(t_s, \vec{x}_s) \bar{\chi}_N(t_0, \vec{x}_0) \rangle \right]$$

- > On lattice, the nucleon matrix element is accessed using two point and three point correlation functions.
- The two point function is given by:

$$C(\Gamma_0, \vec{p}; t_s, t_0) = \sum_{\vec{x}_s} e^{-i(\vec{x}_s - \vec{x}_0) \cdot \vec{p}} \times$$
$$\operatorname{Tr} \left[\Gamma_0 \langle \chi_N(t_s, \vec{x}_s) \bar{\chi}_N(t_0, \vec{x}_0) \rangle \right]$$

The three point function is given by:

$$C_{\mu}(\Gamma_{\nu}, \vec{q}, \vec{p}'; t_s, t_{\rm ins}, t_0) = \sum_{\vec{x}_{\rm ins}, \vec{x}_s} e^{i(\vec{x}_{\rm ins} - \vec{x}_0) \cdot \vec{q}} e^{-i(\vec{x}_s - \vec{x}_0) \cdot \vec{p}'} \times$$

$$\operatorname{Tr}\left[\Gamma_{\nu} \langle \chi_N(t_s, \vec{x}_s) j_{\mu}(t_{\rm ins}, \vec{x}_{\rm ins}) \bar{\chi}_N(t_0, \vec{x}_0) \rangle\right].$$

Interested in theoretically probing the structure of nucleons using lattice QCD.

- Interested in theoretically probing the structure of nucleons using lattice QCD.
- We take into account disconnected contribution and take the continuum limit at physical point.

- > Interested in theoretically probing the structure of nucleons using lattice QCD.
- We take into account disconnected contribution and take the continuum limit at physical point.
- > The nucleon matrix element of for the electromagnetic current is given by:

$$\langle N(p',s')|j_{\mu}|N(p,s)\rangle = \sqrt{\frac{m_N^2}{E_N(\vec{p'})E_N(\vec{p})}}\bar{u}_N(p',s')$$
$$\left[\gamma_{\mu}F_1(q^2) + \frac{i\sigma_{\mu\nu}q^{\nu}}{2m_N}F_2(q^2)\right]u_N(p,s)$$

- > Interested in theoretically probing the structure of nucleons using lattice QCD.
- We take into account disconnected contribution and take the continuum limit at physical point.
- The nucleon matrix element of for the electromagnetic current is given by:

$$\langle N(p',s')|j_{\mu}|N(p,s)\rangle = \sqrt{\frac{m_N^2}{E_N(\vec{p'})E_N(\vec{p})}} \bar{u}_N(p',s')$$

$$\left[\gamma_{\mu}F_1(q^2) + \frac{i\sigma_{\mu\nu}q^{\nu}}{2m_N}F_2(q^2)\right] u_N(p,s)$$

$$G_E(q^2) = F_1(q^2) + \frac{q^2}{4m_N^2}F_2(q^2)$$

$$G_M(q^2) = F_1(q^2) + F_2(q^2)$$

We take the two-point and three-point functions to momentum space.

- > We take the two-point and three-point functions to momentum space.
- We construct the following ratio to get rid of exponentials and overlaps.

$$\Pi_{\mu}(\Gamma_{\nu}, \vec{p}', \vec{p}; t_s, t_{ins}) = \frac{C_{\mu}(\Gamma_{\nu}, \vec{p}', \vec{p}; t_s, t_{ins})}{C(\Gamma_0, \vec{p}'; t_s)} \times \sqrt{\frac{C(\Gamma_0, \vec{p}; t_s - t_{ins})C(\Gamma_0, \vec{p}'; t_{ins})C(\Gamma_0, \vec{p}'; t_s)}{C(\Gamma_0, \vec{p}'; t_s - t_{ins})C(\Gamma_0, \vec{p}; t_{ins})C(\Gamma_0, \vec{p}; t_s)}}$$

➤ For connected contribution, the sink momenta is set to 0.

- ➤ For connected contribution, the sink momenta is set to 0.
- \triangleright All **Γ** for multiple t_s values are computed.

- ➤ For connected contribution, the sink momenta is set to 0.
- \succ All **Γ** for multiple t_s values are computed.
- The number of source positions are increased for increasing t_s, to counter increase in noise.

- ➤ For connected contribution, the sink momenta is set to 0.
- \succ All **Γ** for multiple t_s values are computed.
- The number of source positions are increased for increasing t_s, to counter increase in noise.
- ➤ Lattice conserved current used, no renormalization needed.

- For connected contribution, the sink momenta is set to 0.
- All Γ for multiple t_s values are computed.
- The number of source positions are increased for increasing t_s, to counter increase in noise.
- Lattice conserved current used, no renormalization needed.

Disconnected contribution is obtained correlating high statistics two-point function with disconnected quark loop. Alexandrou et. [1812.10311]

- ➤ For connected contribution, the sink momenta is set to 0.
- \triangleright All **Γ** for multiple t_s values are computed.
- The number of source positions are increased for increasing t_s, to counter increase in noise.
- Lattice conserved current used, no renormalization needed.

- Disconnected contribution is obtained from correlating high statistics two-point function with disconnected quark loop. Alexandrou et. al [1812.10311]
- Disconnected loop computed using deflation, hierarchical probing, dilution.

- ➤ For connected contribution, the sink momenta is set to 0.
- \succ All Γ for multiple t_s values are computed.
- The number of source positions are increased for increasing t_s, to counter increase in noise.
- ➤ Lattice conserved current used, no renormalization needed.

- Disconnected contribution is obtained from correlating high statistics two-point function with disconnected quark loop. Alexandrou et. al [1812.10311]
- Disconnected loop computed using deflation, hierarchical probing, dilution.
- ➤ Local current used, renormalization required.

Statistics

> Statistics for connected three point functions.

$_{ m onf}$ =75	0
$t_s [{ m fm}]$	n_{src}
0.64	1
0.80	2
0.96	5
1.12	10
1.28	32
1.44	112
1.60	128
	0.64 0.80 0.96 1.12 1.28 1.44

cC2	211.060	.80
r	$n_{ m conf} = 400$	0
t_s/a	$t_s[\mathrm{fm}]$	n_{src}
6	0.41	1
8	0.55	2
10	0.69	4
12	0.82	10
14	0.96	22
16	1.10	48
18	1.24	45
20	1.37	116
22	1.51	246

cD2	cD211.054.96			
r	$a_{\rm conf} = 500$	0		
t_s/a	$t_s[\mathrm{fm}]$	n_{src}		
8	0.46	1		
10	0.57	2		
12	0.68	4		
14	0.80	8		
16	0.91	16		
18	1.03	32		
20	1.14	64		
22	1.25	16		
24	1.37	32		
26	1.48	64		

Statistics

> Statistics for connected three point functions.

cB2	211.072	.64		
γ	$n_{ m conf}{=}750$			
t_s/a	$t_s[\mathrm{fm}]$	n_{src}		
8	0.64	1		
10	0.80	2		
12	0.96	5		
14	1.12	10		
16	1.28	32		
18	1.44	112		
20	1.60	128		

cC2	cC211.060.80		
r	$a_{ m conf} = 400$	0	
t_s/a	$t_s[\mathrm{fm}]$	n_{src}	
6	0.41	1	
8	0.55	2	
10	0.69	4	
12	0.82	10	
14	0.96	22	
16	1.10	48	
18	1.24	45	
20	1.37	116	
22	1.51	246	

cD2	cD211.054.96		
r	$n_{ m conf} = 50$	0	
t_s/a	$t_s [{ m fm}]$	n_{src}	
8	0.46	1	
10	0.57	2	
12	0.68	4	
14	0.80	8	
16	0.91	16	
18	1.03	32	
20	1.14	64	
22	1.25	16	
24	1.37	32	
26	1.48	64	

> Statistics for disconnected three point functions.

Ensemble	$n_{\rm conf}$	n_{ev}	$n_{ m src}$
cB211.072.64	750	200	477
cC211.060.80	400	450	650
cD211.054.96	500	-	480

We are interested in the ground state matrix element of nucleons.

- > We are interested in the ground state matrix element of nucleons.
- For connected, we do a multi-state fit using the following expressions of two point (spectral decomposition) and three point functions to reach ground state.

$$C(\Gamma_0, \vec{p}, t_s) = \sum_n c_n(\vec{p}) e^{-E_n(\vec{p})t_s}$$

- > We are interested in the ground state matrix element of nucleons.
- For connected, we do a multi-state fit using the following expressions of two point (spectral decomposition) and three point functions to reach ground state.

$$C(\Gamma_0, \vec{p}, t_s) = \sum_n c_n(\vec{p}) e^{-E_n(\vec{p})t_s}$$

$$C_{\mu}(\Gamma_k, \vec{q}, t_s, t_{\text{ins}}) = \sum_{i,j} A_{\mu}^{ij}(\Gamma_k, \vec{q}) e^{-E_i(\vec{p})(t_s - t_{\text{ins}}) - E_j(\vec{q})t_{\text{ins}}}$$

- > We are interested in the ground state matrix element of nucleons.
- For connected, we do a multi-state fit using the following expressions of two point (spectral decomposition) and three point functions to reach ground state.

$$C(\Gamma_0, \vec{p}, t_s) = \sum_n c_n(\vec{p}) e^{-E_n(\vec{p})t_s}$$

$$C_{\mu}(\Gamma_k, \vec{q}, t_s, t_{\rm ins}) = \sum_{i,j} A_{\mu}^{ij}(\Gamma_k, \vec{q}) e^{-E_i(\vec{p})(t_s - t_{\rm ins}) - E_j(\vec{q})t_{\rm ins}}$$

$$\Pi_{\mu}(\Gamma_{\nu}; \vec{q}) = \frac{A_{\mu}^{0,0}(\Gamma_{\nu}, \vec{q})}{\sqrt{c_0(\vec{0})c_0(\vec{q})}}$$

$$C(\Gamma_0, \vec{p}, t_s) = \sum_{n} c_n(\vec{p}) e^{-E_n(\vec{p})t_s}$$

$$C_{\mu}(\Gamma_k, \vec{q}, t_s, t_{\text{ins}}) = \sum_{i,j} A_{\mu}^{ij}(\Gamma_k, \vec{q}) e^{-E_i(\vec{p})(t_s - t_{\text{ins}}) - E_j(\vec{q})t_{\text{ins}}}$$

$$\Pi_{\mu}(\Gamma_{\nu}; \vec{q}) = \frac{A_{\mu}^{0,0}(\Gamma_{\nu}, \vec{q})}{\sqrt{c_0(\vec{0})c_0(\vec{q})}}$$
1.6-
1.5-
2.5-
3.1.3-
3.1.3-
3.1.3-
3.1.3-
3.1.3-
3.1.3-
3.1.3-
3.1.3-
3.1.3-
3.1.3-
3.1.3-
3.1.3-
3.1.3-
3.1.3-
3.1.3-
3.1.3-
3.1.3-
3.1.3-
3.1.3-
3.1.3-
3.1.3-
3.1.3-
3.1.3-
3.1.3-
3.1.3-
3.1.3-
3.1.3-
3.1.3-
3.1.3-
3.1.3-
3.1.3-
3.1.3-
3.1.3-
3.1.3-
3.1.3-
3.1.3-
3.1.3-
3.1.3-
3.1.3-
3.1.3-
3.1.3-
3.1.3-
3.1.3-
3.1.3-
3.1.3-
3.1.3-
3.1.3-
3.1.3-
3.1.3-
3.1.3-
3.1.3-
3.1.3-
3.1.3-
3.1.3-
3.1.3-
3.1.3-
3.1.3-
3.1.3-
3.1.3-
3.1.3-
3.1.3-
3.1.3-
3.1.3-
3.1.3-
3.1.3-
3.1.3-
3.1.3-
3.1.3-
3.1.3-
3.1.3-
3.1.3-
3.1.3-
3.1.3-
3.1.3-
3.1.3-
3.1.3-
3.1.3-
3.1.3-
3.1.3-
3.1.3-
3.1.3-
3.1.3-
3.1.3-
3.1.3-
3.1.3-
3.1.3-
3.1.3-
3.1.3-
3.1.3-
3.1.3-
3.1.3-
3.1.3-
3.1.3-
3.1.3-
3.1.3-
3.1.3-
3.1.3-
3.1.3-
3.1.3-
3.1.3-
3.1.3-
3.1.3-
3.1.3-
3.1.3-
3.1.3-
3.1.3-
3.1.3-
3.1.3-
3.1.3-
3.1.3-
3.1.3-
3.1.3-
3.1.3-
3.1.3-
3.1.3-
3.1.3-
3.1.3-
3.1.3-
3.1.3-
3.1.3-
3.1.3-
3.1.3-
3.1.3-
3.1.3-
3.1.3-
3.1.3-
3.1.3-
3.1.3-
3.1.3-
3.1.3-
3.1.3-
3.1.3-
3.1.3-
3.1.3-
3.1.3-
3.1.3-
3.1.3-
3.1.3-
3.1.3-
3.1.3-
3.1.3-
3.1.3-
3.1.3-
3.1.3-
3.1.3-
3.1.3-
3.1.3-
3.1.3-
3.1.3-
3.1.3-
3.1.3-
3.1.3-
3.1.3-
3.1.3-
3.1.3-
3.1.3-
3.1.3-
3.1.3-
3.1.3-
3.1.3-
3.1.3-
3.1.3-
3.1.3-
3.1.3-
3.1.3-
3.1.3-
3.1.3-
3.1.3-
3.1.3-
3.1.3-
3.1.3-
3.1.3-
3.1.3-
3.1.3-
3.1.3-
3.1.3-
3.1.3-
3.1.3-
3.1.3-
3.1.3-
3.1.3-
3.1.3-
3.1.3-
3.1.3-
3.1.3-
3.1.3-
3.1.3-
3.1.3-
3.1.3-
3.1.3-
3.1.3-
3.1.3-
3.1.3-
3.1.3-
3.1.3-
3.1.3-
3.1.3-
3.1.3-
3.1.3-
3.1.3-
3.1.3-
3.1.3-
3.1.3-
3.1.3-
3.1.3-
3.1.3-
3.1.3-
3.1.3-
3.1.3-
3.1.3-
3.1.3-
3.1.3-
3.1.3-
3.1.3-
3.1.3-
3.1.3-
3.1.3-
3.1.3-
3.1.3-
3.1.3-
3.1.3-
3.1.3-
3.1.3-
3.1.3-
3.1.3-
3.1.3-
3.1.3-
3.1.3-
3.1.3-
3.1.3-
3.1.3-
3.1.3-
3.1.3-
3.1.3-
3.1.3-
3.1.3-
3.1.3-
3.1.3-
3.1.3-
3.1.3-
3.1.3-
3.1.3-
3.1.3-
3.1.3-
3.1.3-
3.1.3-
3.1.3-
3.1.3-
3.1.3-
3.1.3-
3.1.3-
3.1.3-
3.1.3-
3.1.3-

> We do a three-state fit to the two-point function and a two-state fit to the three-point function per jackknife bin simultaneously.

- > We do a three-state fit to the two-point function and a two-state fit to the three-point function per jackknife bin simultaneously.
- \succ Keeping the isoscalar and isovector case energies separate, we fit together, the three point functions contributing to G_E and G_M together with the two point function.

- > We do a three-state fit to the two-point function and a two-state fit to the three-point function per jackknife bin simultaneously.
- \succ Keeping the isoscalar and isovector case energies separate, we fit together, the three point functions contributing to G_E and G_M together with the two point function.
- > Only the ground state energy is shared between two-point and three-point functions.

- > We do a three-state fit to the two-point function and a two-state fit to the three-point function per jackknife bin simultaneously.
- \succ Keeping the isoscalar and isovector case energies separate, we fit together, the three point functions contributing to G_E and G_M together with the two point function.
- > Only the ground state energy is shared between two-point and three-point functions.
- > The energy at finite momenta is determined using dispersion relation.

$$E_N(\vec{p}) = \sqrt{m_N^2 + \vec{p}^2}$$

- > We do a three-state fit to the two-point function and a two-state fit to the three-point function per jackknife bin simultaneously.
- \triangleright Keeping the isoscalar and isovector case energies separate, we fit together, the three point functions contributing to G_E and G_M together with the two point function.
- > Only the ground state energy is shared between two-point and three-point functions.
- > The energy at finite momenta is determined using dispersion relation.

$$E_N(\vec{p}) = \sqrt{m_N^2 + \vec{p}^2}$$

> The second excited state energy only appears in the two point function.

➤ This is done for each Q² value.

- \triangleright This is done for each Q² value.
- We vary the ranges for two-point function $\boldsymbol{t}_{s,min}$ and three-point function $\boldsymbol{t}_{s,min}$ and $\boldsymbol{t}_{ins,min}$.

- \triangleright This is done for each Q² value.
- We vary the ranges for two-point function $t_{s,min}$ and three-point function $t_{s,min}$ and $t_{ins,min}$.

- \rightarrow This is done for each Q² value.
- We vary the ranges for two-point function $t_{s,min}$ and three-point function $t_{s,min}$ and $t_{ins,min}$.
- > Results from all fits are then model averaged[2309.05774].
- For each fit we have $\chi^{2,i}$ and the $N_{dof}^{i} = (N_{data} N_{params})$. Assign weight wi = $(-0.5\chi^{2,i} + N_{dof}^{i})$.

- \triangleright This is done for each Q² value.
- We vary the ranges for two-point function $\boldsymbol{t}_{s,min}$ and three-point function $\boldsymbol{t}_{s,min}$ and $\boldsymbol{t}_{ins,min}$.
- > Results from all fits are then model averaged[2309.05774].
- For each fit we have $\chi^{2,i}$ and the $N_{dof}^{i} = (N_{data} N_{params})$. Assign weight wi = $(-0.5\chi^{2,i} + N_{dof}^{i})$.
- ightharpoonup Probability = $e^{wi}/\sum_i e^{wi}$

Isovector form factors

 \triangleright The procedure is repeated for all Q² values for both electric and magnetic case resulting in the following.

Isovector form factors

 \triangleright The procedure is repeated for all Q² values for both electric and magnetic case resulting in the following.

Isoscalar connected form factors

 \triangleright The procedure is repeated for all Q² values for both electric and magnetic case resulting in the following.

Isoscalar connected form factors

 \succ The procedure is repeated for all Q² values for both electric and magnetic case resulting in the following.

> For the isovector contribution, the disconnected contribution cancels (u,d degeneracy).

- > For the isovector contribution, the disconnected contribution cancels (u,d degeneracy).
- ➤ The following is the result only for isoscalar combination.
- > Again we do two state fits but share first excited state energies with two point function.

- > For the isovector contribution, the disconnected contribution cancels (u,d degeneracy).
- > The following is the result only for isoscalar combination.
- > Again we do two state fits but share first excited state energies with two point function.

Ensemble	$t_s^{ m low,3pt}/a$	$t_{ m ins}^{ m source}/{ m a}$	$t_s^{ m low,2pt}/a$
cB211.72.64	8	2	2
cC211.60.80	10	2	3
cD211.54.96	10	2	4

- \triangleright With momenta in the sink the total number of Q² increases to O(100).
- We show binned results weighted by the errors.

Proton form factors

The isoscalar and isovector form factors can be combined in the following way to give proton form factor.

Proton form factors

The isoscalar and isovector form factors can be combined in the following way to give proton form factor.

$$G^{p}(Q^{2}) = \frac{1}{2} \left[\frac{G^{u+d}(Q^{2})}{3} + G^{u-d}(Q^{2}) \right]$$

Proton form factors

The isoscalar and isovector form factors can be combined in the following way to give proton form factor.

Neutron form factors

The isoscalar and isovector form factors can be combined in the following way to give neutron form factor.

Neutron form factors

The isoscalar and isovector form factors can be combined in the following way to give neutron form factor.

$$G^{n}(Q^{2}) = \frac{1}{2} \left[\frac{G^{u+d}(Q^{2})}{3} - G^{u-d}(Q^{2}) \right]$$

Neutron form factors

The isoscalar and isovector form factors can be combined in the following way to give neutron form factor.

$$G^{n}(Q^{2}) = \frac{1}{2} \left[\frac{G^{u+d}(Q^{2})}{3} - G^{u-d}(Q^{2}) \right]$$

Determination of radius and magnetic moment

 \triangleright Once we have the parameterization of Q² and a², the radius can be obtained by:

$$\langle r_X^2 \rangle^q = \frac{-6}{G_X^q(0)} \left. \frac{\partial G_X^q(q^2)}{\partial q^2} \right|_{q^2=0}$$

 \triangleright The moments are obtained simply by taking the value at $Q^2 = 0$:

$$G_M^p(0) = \mu_p, \quad G_M^n(0) = \mu_n$$

Dipole

$$G(Q^2) = \frac{g}{\left(1 + \frac{Q^2}{12}r^2\right)^2}$$

$$G(Q^2, a^2) = \frac{g(a^2)}{\left(1 + \frac{Q^2}{12}r^2(a^2)\right)^2}$$

$$g(a^2) = g_0 + a^2 g_2$$
, $r^2(a^2) = r_0^2 + a^2 r_2^2$

Dipole

$$G(Q^2) = \frac{g}{\left(1 + \frac{Q^2}{12}r^2\right)^2}$$

$$G(Q^2, a^2) = \frac{g(a^2)}{\left(1 + \frac{Q^2}{12}r^2(a^2)\right)^2}$$

$$g(a^2) = g_0 + a^2 g_2$$
, $r^2(a^2) = r_0^2 + a^2 r_2^2$

z-expansion

$$G(Q^{2}) = \sum_{k=0}^{k_{\text{max}}} c_{k} z^{k}(Q^{2})$$

$$z = \frac{\sqrt{t_{\text{cut}} + Q^{2}} - \sqrt{t_{\text{cut}}}}{\sqrt{t_{\text{cut}} + Q^{2}} + \sqrt{t_{\text{cut}}}}$$

$$c_{k}(a^{2}) = c_{k,0} + a^{2} c_{k,2}$$

$$G(Q^{2}, a^{2}) = \sum_{k=0}^{k_{\text{max}}} c_{k}(a^{2}) z^{k}(Q^{2})$$

Dipole

$$G(Q^2) = \frac{g}{\left(1 + \frac{Q^2}{12}r^2\right)^2}$$

$$G(Q^2, a^2) = \frac{g(a^2)}{\left(1 + \frac{Q^2}{12}r^2(a^2)\right)^2}$$

$$g(a^2) = g_0 + a^2 g_2$$
, $r^2(a^2) = r_0^2 + a^2 r_2^2$

z-expansion

$$G(Q^2) = \sum_{k=0}^{k_{\text{max}}} c_k z^k (Q^2)$$
 $z = \frac{\sqrt{t_{\text{cut}} + Q^2} - \sqrt{t_{\text{cut}}}}{\sqrt{t_{\text{cut}} + Q^2} + \sqrt{t_{\text{cut}}}}$
 $c_k(a^2) = c_{k,0} + a^2 c_{k,2}$
 $G(Q^2, a^2) = \sum_{k=0}^{k_{\text{max}}} c_k(a^2) z^k (Q^2)$

Galster-like

$$G(Q^2) = \frac{Q^2 A}{4m_N^2 + Q^2 B} \frac{1}{\left(1 + \frac{Q^2}{0.71 \,\text{GeV}^2}\right)^2}$$

Dipole

$$G(Q^{2}) = \frac{g}{\left(1 + \frac{Q^{2}}{12}r^{2}\right)^{2}}$$

$$G(Q^{2}, a^{2}) = \frac{g(a^{2})}{\left(1 + \frac{Q^{2}}{12}r^{2}(a^{2})\right)^{2}}$$

$$q(a^2) = q_0 + a^2 q_2$$
, $r^2(a^2) = r_0^2 + a^2 r_2^2$

z-expansion

$$G(Q^{2}) = \sum_{k=0}^{k_{\text{max}}} c_{k} z^{k}(Q^{2})$$

$$z = \frac{\sqrt{t_{\text{cut}} + Q^{2}} - \sqrt{t_{\text{cut}}}}{\sqrt{t_{\text{cut}} + Q^{2}} + \sqrt{t_{\text{cut}}}}$$

$$c_{k}(a^{2}) = c_{k,0} + a^{2} c_{k,2}$$

$$G(Q^{2}, a^{2}) = \sum_{k=0}^{k_{\text{max}}} c_{k}(a^{2}) z^{k}(Q^{2})$$

Galster-like

$$G(Q^2) = \frac{Q^2 A}{4m_N^2 + Q^2 B} \frac{1}{\left(1 + \frac{Q^2}{0.71 \,\text{GeV}^2}\right)^2}$$

	Dipole	Z-expansion	Galster-like
Proton G _E	1 step + 2 step	1 step	-
Proton G _M	1 step + 2 step	1 step	-
Neutron G _E	-	-	1 step
Neutron G _M	1 step + 2 step	1 step	-

Proton electric form factors with an example fit

Proton electric form factors with an example fit

Proton electric form factors with an example fit

Ensemble	$\langle r_{\rm E}^2 \rangle^p \ [{\rm fm}^2]$	$ ilde{\chi}^2$
cB211.72.64	0.619(31)	0.518
cC211.60.80	0.609(17)	0.635
cD211.54.96	0.635(20)	1.969
a = 0, 1-step	0.650(52)	1.042
a = 0, 2-step	0.650(52)	-

$Q_{\mathrm{cut}}^{2}[\mathrm{GeV}^{2}]$	$\langle r_{\rm E}^2 \rangle^p$	$[fm^2]$	${ ilde \chi}^2$
0.40	0.700	0(76)	0.770
0.50	0.713	3(72)	0.638
0.70	0.720	0(69)	0.595
0.85	0.722	2(68)	0.583
1.00	0.723	3(68)	0.585

Proton magnetic form factors with an example fit

Ensemble	μ^p	$\langle r_{\rm M}^2 \rangle^p \ [{\rm fm}^2]$	$\tilde{\chi}^2$
cB211.72.64	2.524(67)	0.562(34)	1.016
cC211.60.80	2.553(37)	0.527(17)	2.230
cD211.54.96	2.592(49)	0.569(24)	2.732
a=0, 1-step	2.66(12)	0.576(59)	2.326
a=0, 2-step	2.66(12)	0.569(60)	-

$Q_{\mathrm{cut}}^{2}[\mathrm{GeV}^{2}]$	μ^p	$\langle r_{\rm M}^2 \rangle^p \ [{\rm fm}^2]$	$ ilde{\chi}^2$
0.40	2.97(12)	0.98(12)	1.172
0.50	2.92(11)	0.91(11)	1.007
0.70	2.89(10)	0.82(10)	1.159
0.85	2.89(10)	0.826(99)	1.099
1.00	2.88(10)	0.802(97)	1.095

Neutron electric form factor with an example fit

Neutron magnetic form factor with an example fit

Ensemble	μ^n	$\langle r_{\rm M}^2 \rangle^n \ [{\rm fm^2}]$	$\chi^2/N_{ m dof}$
cB211.72.64	-1.612(59)	0.575(48)	0.770
cC211.60.80	-1.637(30)	0.547(21)	1.883
cD211.54.96	-1.676(45)	0.619(37)	2.182
a = 0, 1-step	-1.72(11)	0.647(86)	2.072
a = 0, 2-step	-1.74(11)	0.644(89)	_

$Q_{\mathrm{cut}}^{2}[\mathrm{GeV}^{2}]$	μ^n	$\langle r_{\rm M}^2 \rangle^n \ [{\rm fm}^2]$	$\chi^2/N_{ m dof}$
0.40	-1.95(12)	1.11(17)	0.987
0.50	-1.88(10)	1.02(16)	0.890
0.70	-1.861(92)	0.93(14)	0.910
0.85	-1.859(91)	0.92(14)	0.821
1.00	-1.848(89)	0.90(13)	0.811

Results

Results

Final results: [2502.11301]

$\sqrt{\langle r_{\rm E}^2 \rangle^p}$ [fm]	μ^p	$\sqrt{\langle r_{\rm M}^2 \rangle^p}$ [fm]	μ^n	$\sqrt{\langle r_{\rm M}^2 \rangle^n}$ [fm]	$\langle r_{\rm E}^2 \rangle^n \ [{\rm fm}^2]$
0.850(37)	2.883(96)	0.901(51)	-1.851(85)	0.949(69)	-0.147(48)

Summary and Conclusion

- > We have results for electromagnetic form factors at continuum limit, at physical point.
- > Results include light disconnected contributions with additional sink momenta.
- Multistate fit ensuring ground state convergence.
- > Possible improvement: Add analysis results from another lattice volume.

This project has received funding from the European Union's Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie grant agreement No 101034267.