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A lattice with N = 6 lattice sites in each direction.➢ Continuum field theories: 
Infinite DOF.

➢ Perturbative regularization: 
Fails at low energies e.g. QCD. 

➢ Discretize the space-time: 
Replace continuum with a grid 
of lattice sites with 1/a as UV 
cutoff.

In this formulation the expectation value of an observable (without fermions) is given by:
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Standard approach: Hybrid Monte Carlo 

➢ Generate conjugate momentum field.

➢ Use Hamiltonian dynamics for updates.

➢ Accept/Reject step: Accepted with exp(- ΔH).

. . . . . . . 

Initial field 
configuration

Build up a chain 
of configurations

If accepted put in chain If rejected, repeat previous

➢ Update using integrator (e.g. leapfrog).

H
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Continuum limit and lattice setup
➢ Continuum limit needed to 

extract physical values. 
Extrapolate 

to the 
continuum

a → 0

Keep physical volume (aN)D constant (D=2 above).
➢ We use three ensembles with 

Nf=2+1+1 from ETMC.

➢ We use clover improved, twisted-mass fermions (O(a) improved).
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Nucleon matrix element on lattice

➢ We take the two-point and three-point 
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Nucleon matrix element on lattice

➢ We take the two-point and three-point 
functions to momentum space.

➢ We construct the following ratio to get rid of 
exponentials and overlaps.
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three point functions contributing to GE and GM together with the two point 
function.

➢ Only the ground state energy is shared between two-point and three-point 
functions.

➢ The energy at finite momenta is determined using dispersion relation. 

➢ The second excited state energy only appears in the two point function.
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wi
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Extraction of Form Factors and Model Averaging
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Disconnected contributions to isoscalar form factor
➢ With momenta in the sink the total number of Q2 increases to O(100).

➢ We show binned results weighted by the errors.
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Proton form factors 
➢ The isoscalar and isovector form factors 

can be combined in the following way to 
give proton form factor.
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➢ The moments are obtained simply by taking the value at Q2 = 0:

Determination of radius and magnetic moment
➢ Once we have the parameterization of Q2 and a2, the radius can be obtained by:
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Parameterization of Q2 Dependance and continuum limit

Dipole Z-expansion Galster-like

Proton GE 1 step + 2 step 1 step -

Proton GM 1 step + 2 step 1 step -

Neutron GE - - 1 step 

Neutron GM 1 step + 2 step 1 step -

Dipole Galster-like
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Proton electric form factors with an example fit
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Proton magnetic form factors with an example fit
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Neutron electric form factor with an example fit
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Neutron magnetic form factor with an example fit
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Results
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Final results:
[2502.11301]
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Summary and Conclusion

Thank you!
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➢ We have results for electromagnetic form factors at continuum limit, at physical 
point.

➢ Results include light disconnected contributions with additional sink momenta.

➢ Multistate fit ensuring ground state convergence.

➢ Possible improvement: Add analysis results from another lattice volume.


