
Particle Accelerator
MIddle LAyer (PAMILA)

November 15, 2024 @ python Accelerator Middle Layer Virtual Meeting

Yoshiteru Hidaka

NSLS-II, BNL

Motivation / Main Ideas for New Middle Layer
• Initially setting up for pyacal, but realized simulation mode not

implemented yet, and only work with a digital twin (DT) at that time.
• Started creating a minimal working DT and also implementing a

simulator mode with pyAT.  Turned out not a quick job.
• At some point, I thought I might as well write a concept code that

satisfies my wish list for a new middle layer...:
• Can handle any type of facility-specific customization for unit conversion

(including multi-input-multi-output).
• Compatible with bluesky / ophyd / tiled

• Push facility-specific customizations to low levels to make customizations invisible in
the logic of high-level code as much as possible.

• Utilize modern data management.
• More modular high-level applications (HLAs)

• More reusable / manageable parameter specifications.

2

Unit Conversion
• PAMILA distinguishes 2 types of unit conversion:

• Universal unit conversion
• NOT device dependent: “intra-dimensional” unit conv. (i.e., unit dimension DOESN’T

change)
• Examples: mA  A, mm  nm, GHz  Hz
• Handled at PAMILA signal level via Python package “pint”

• Representation conversion
• Device dependent

• Typically, “inter-dimensional” unit conv. (i.e., unit dimension DOES change)

• Examples: A  mrad, A  m-1, digital counts  A, etc.
• Handled at PAMILA device level

• Use “repr” (representation) to avoid confusion
• “unit”: [A], [mA], [m-1], etc.; no association to devices

• Example: Combined func. magnet w/ Ch.1 and Ch.2 currents [A] that affect b1 [rad] and b2
[m-1] has repr’s :

• I1 [A], I2 [A], b1 [rad], b2 [m-1]

3

PAMILA Class Hierarchy

• PamilaDevice (pdev)
• Contains a custom ophyd Device object as an attribute (i.e., bluesky compatible)
• The ophyd device takes PamilaSignal's as components
• Handles repr. conversions

• MiddleLayerVariable (mlv)
• Holds one pdev for each machine mode (LIVE, DigitalTwin, SIMULATOR, …)

• Asynchronous (parallel) get/put operations for convenience:
• MiddleLayerVariableList (mlvl): A list of mlv's with enable/disable control
• MiddleLayerVariableTree (mlvt): Each attribute points to mlvl's

• End users are expected to deal with only mlv and above, NOT PamilaDevice / PamilaSignal objects.

4

Signal

Device
(LIVE)

Device
(Simulator)

Signal

…

…

…

MLV

ExternalPamilaSignal [w/ unit] InternalPamilaSignal [w/ unit] UserPamilaSignal [w/ unit]

PamilaSignal

EpicsSignal [w/o unit]

PV (extpv) [w/o unit]

InternalSignal [w/o unit]

SimPV (intpv) [w/o unit]

StorageSignal [w/o unit]

StoragePV [w/o unit]

Online: LIVE / DT Offline: Simulators (Local models) For repr. conversions

High-Level Application (HLA) into Stages
• Typical stages for an HLA

• acquire
• Input: Data acquisition options
• Output: Raw data (w/ or w/o tiled uid)

• postprocess
• Input: Raw data
• Output: Postprocessed data (w/ or w/o tiled uid)

• plot
• Input: Raw/postprocessed data
• Output: Plots

• library_output
• Input: Raw/postprocessed data
• Output: Data in a format consumable by other HLAs

• Each stage implemented as a module. Within each module:
• A "Params" object specifies all options for a "Stage" object.
• To run a stage, just call "run" method of the "Stage" object.

5

HLA Flow
• An HLA flow (sequencer) specifies a sequence of HLA

stages to be run.

• Calling "run" method of this "flow" object starts running
the first stage, passes the output to the next stage,
runs the next stage, and repeats until the final stage.

• A "flow" can enter and exit at any stage
• Easy re-processing of raw data with different post-processing

options.
• Enable stage-by-stage debugging.
• Easy switch between standalone and library usage.

• Another benefit: Hierarchical parameter (option)
specifications
• avoid cluttering with many "flat" (and often irrelevant) options

6

acquire

postprocess

library_outputplot

Example: Dispersion/Chormaticity HLA

7

HLA "disp_chrom" - Stage "acquire":

HLA "disp_chrom" - Stage "postprocess":

HLA "disp_chrom" - Stage "plot":

HLA "orbit/slow_acq" - Flow "library" - Stage "acquire":

HLA "tunes/via_pvs" - Flow "library" - Stage "acquire":

disp_chrom/__init__:
Main script:

bluesky Wrapper
• A 30-min. meeting on setting up tiled with D. Allan & M. Rakitin from NSLS-II DSSI
• Need some getting used to yield/yield from in bluesky plans
• Developed wrapper functions:

• get(obj_list_to_get)
• abs/rel_put(obj_list_to_put,

values_to_put)
• abs/rel_put_then_get(obj_list_to_get,

obj_list_to_put,
values_to_put)

• bluesky's RunEngine runs plans within the wrapper functions
• Working with monkey patching (to handle pint objects, etc.)
• Can write to tiled; can also directly get output data in memory
• Objects can be ophyd device/signal, pamila device, MLV, MLVL, and MLVT.
• Built-in capabilities of repeated measurements and statistical calculations
• Will "set and wait" (wait conditions specified in each device)
• Set modes: jump (i.e., one-step) or ramp (i.e., multi-step)
• Need integration into HLAs

8

Summary
• A new middle layer package "PAMILA" is being developed at NSLS-II.

• New main features include:
• Handle complicated multi-input-multi-output "unit conversions"
• "Flow of stages" concept for HLA implementations
• bluesky / ophyd / tiled compatibility

• Initial commit for the package will be uploaded to GitHub after (a lot
of) cleanup.

9

Backup

10

Desired Basic Interactions: One-to-One
mlv := Middle Layer Variable (= an abstract version of PV)
Q := Quantity object in Python pint unit handling package

• One-to-one get:
• mlv_orbcor_x_I_RB.get()  Q("0.5 A")
• mlv_orbcor_x_angle_RB.get()  Q("-10 urad")

• One-to-one put:
• mlv_orbcor_x_I_SP.put(Q("0.5 A"))
• mlv_orbcor_x_angle_SP.put(Q("-10 urad"))

• Differences from aphla/pytac:
• Units are attached.
• No need to specify which property, SP/RB, & unit system on every get/put()

11

Desired Basic Interactions: Many-to-Many (1/2)

• x-y coupled orbit corrector:
• (Ch.1 [A], Ch. 2 [A]) determines x [urad] & y [urad] kick angles.

• mlv_ch1_ch2.get()  [Q("0.1 A"), Q("-0.2 A")] (2 PVs  2 out)
• mlv_ch1_ch2.put([Q("0.1 A"), Q("-0.2 A")]) (2 in  2 PVs)
• mlv_x_y.get()  [Q("5 urad"), Q("-7 urad")] (2 PVs  2 out)
• mlv_x_y.put([Q("5 urad"), Q("-7 urad")]) (2 in  2 PVs)
• mlv_x.get()  Q("5 urad") (2 PVs  1 out)
• mlv_x.put([Q("5 urad")]) (1 in [+ 2 aux. (= Ch.1 & Ch.2)]  2 PVs)

• This MLV defined to maintain current "y" angle
• Enable orthogonal kick response measurements
• Can handle ID correctors whose kick strengths are also gap dependent: 1 in [+3 aux. (=

Ch.1, Ch.2 & gap)]  2 PVs

• Coupled combined function magnets (i.e., bend + quad) can be
handled similarly

12

Desired Basic Interactions: Many-to-Many (2/2)
• 30 sextupoles in SL1 family at NSLS-II are powered by 5 independent power

supplies (PS)
• Read / set the entire family of magnets:

• mlv_SL1_I.get()  [31.73[A], 31.75[A], 31.76[A], 31.76[A], 31.79[A]]
• mlv_SL1_I.put([31.73[A], 31.75[A], 31.76[A], 31.76[A], 31.79[A]])
• mlv_SL1_K2.get()  [-13.30[m-3], -13.31[m-3], -13.29[m-3], -13.30[m-3], -13.31[m-3], … (a total

of 30 values)]
• mlv_SL1_K2.put([30 values])  Not feasible / allowed
• mlv_SL1_avg_K2.get()  Q("-13.3 m^{-3}")
• mlv_SL1_avg_K2.put(Q("-13.3 m^{-3}"))

• Six NSLS-II SL1 sextupoles are powered in series by one PS
• mlv_SL1_G1_I.get()  31.73 [A]
• mlv_SL1_G1_I.put(31.73 [A])
• mlv_SL1_G1_K2.get()  [-13.30[m-3], -13.31[m-3], -13.29[m-3], -13.30[m-3], -13.31[m-3],

13.32[m-3]]
• mlv_SL1_G1_K2.put([6 values])  Not feasible / allowed
• mlv_SL1_G1_avg_K2.get()  Q("-13.3 m^{-3}")
• mlv_SL1_G1_avg_K2.put(Q("-13.3 m^{-3}"))

13

Single-Input Single-Output (SISO) get/put
float [unit] := Python float (i.e., no unit attached) in the unit of “unit”

Q_ [repr] := `pint` Quantity object in the unit of “repr”

“LoLv” repr := repr at low (PV) level

“HiLv” repr := repr at high (user interaction) level

“(Lo => Hi)” := Conversion function from LoLv to HiLv

“(Hi => Lo)” := Conversion function from HiLv to LoLv

14

get

put

float
[PV]

Q_
[LoLv]

float
[(Lo=>Hi) input]

PV
float

[(Lo=>Hi) output]
Q_

[HiLv]
Conv.
Func.

float
[PV]

Q_
[LoLv]

float
[(Hi=>Lo) output]

PV
float

[(Hi=>Lo) input]
Q_

[HiLv]
Conv.
Func.

• “put” is just the reverse flow of “get”, but with the inverse of the “get” conversion function, if it exists.
• If the inverse of the “get” unit conversion function is not a function, you can still define a function with

some restrictions. Or make “put” unavailable (i.e., read-only).

Multiple-Input Multiple-Output (MIMO) get/put

15

• “put” is just the reverse flow of “get”, but with the inverse of the “get” conversion function, if it exists.
• If the inverse of the “get” unit conversion function is not a function, you can still define a function with

some restrictions. Or make “put” unavailable (i.e., read-only).

get

float [PV_1] Q_1 [LoLv_1] float [(Lo=>Hi) inputs[0]]PV_1
float [(Lo=>Hi) outputs [0]] Q_1 [HiLv_1]

Conv.
Func.

Q_2 [HiLv_2]float [(Lo=>Hi) outputs [1]]

Q_3 [HiLv_3]float [(Lo=>Hi) outputs [2]]
float [(Lo=>Hi) inputs[1]]PV_2 float [PV_2] Q_2 [LoLv_2]

put

float [(Hi=>Lo) inputs [0]]Q_1 [HiLv_1]

Q_2 [HiLv_2] float [(Hi=>Lo) inputs [1]]

Q_3 [HiLv_3] float [(Hi=>Lo) inputs [2]]

Conv.
Func.

float [(Hi=>Lo) outputs[0]] Q_1 [LoLv_1] float [PV_1] PV_1

float [(Hi=>Lo) outputs[1]] Q_2 [LoLv_2] float [PV_2] PV_2

List of Re-usable HLAs

• assert_beam_current (TODO)
• min_current, max_current

• orbit/slow_acq, fast_acq (TODO), tbt_acq (TODO)

• disp_chrom

• tunes/via_pvs & /via_tbt (TODO)

• respmat (TODO) / respmat_orb (TODO) / respmat_tune (TODO), etc.

• …

16

