
VISA Development Status

27th September 2024



Outline
● New features (in prod)

○ Multiple cloud provider support 
○ File transfer component
○ Printing from VISA instance to local printer

● Recent developments (dev branch)
○ Migration to Quarkus framework
○ Websocket improvements

● Development plans

● Usage statistics at the ILL



● Allow instances to be created on different clouds

● Current situation at the ILL: upgrade of infrastructure
○ Allows seamless migration from one provider to another

● Different resources can be available on each cloud
○ Reserve resources for specific users

● VISA Admin can dynamically add a new provider

New features
Multiple cloud provider support (October 2022)



New features
File transfer (November 2023)

● Simplify transfer of files between user’s computer and instance
○ Previously possible only via JupyterLab

● Add a graphical component to the VISA Angular client to give 
access to the instance file system

● Two open-source projects added to @illgrenoble on GitHub
○ node-fs-api: web-server providing HTTP access to filesystem commands (eg 

ls, writeFile, rm, cp, mv, mkdir, rmdir) - deployed to each instance
○ ngx-fs-client: Angular component renders data from node-fs-api

● VISA automatically determines if node-fs-api is running
○ ngx-fs-client component rendered if available



New features
File transfer

● Angular component provides 
standard file manager functionality

○ Browse and navigate folder contents
○ File upload and download
○ Drag and Drop files and folders
○ Cut/Copy/Delete actions
○ Create new files and folders
○ Rename files and folders
○ View as icons or list



New features
Printing to local printer (January 2024)

● User request to print from VISA desktop to a local printer

● Add a CUPS driver that will send PDF files to VISA client and 
automatically open up the print dialog of the browser

● Three open-source projects added to @illgrenoble
○ visa-cups: adds default CUPS driver to instance to manage print requests
○ visa-print-server: websocket server to allow connections from VISA clients 

and send PDFs to clients (local REST API) - deployed to each instance
○ visa-print-client: Angular component to connect websocket and open print 

dialog when PDFs received

● VISA automatically determines if visa-print-server is running
○ Websocket connection made if available



New features
Printing to local printer

● User can print via user interfaces or command line 

$ lp filename.pdf

Command to print to 
default printer

Request received by 
VISA client (owner only)

User prints with standard 
browser dialog



Recent developments
Migration to Quarkus framework

● visa-api-server previously built using Dropwizard

● Maintenance and upgrading becoming difficult
○ Outdated library (lacking in documentation)
○ Upgrading difficult (major API changes)
○ Many third-party libraries used

■ Upgrading Dropwizard breaks other dependencies
■ Not all dependencies maintained and upgradable

● Stuck with Java 14



Recent developments
Migration to Quarkus framework

● Decision made to migrate to Quarkus framework
○ ILL chosen framework (experience gained from other projects)
○ Easier to onboard new developers

● A leading solution for microservice/backend development
○ Excellent user documentation and developer environment
○ Many extensions already included

■ 3rd party libraries reduced from 29 to 7
○ Better for production deployment

■ Native image build possible
○ Now running with Java 21 (LTS)



Recent developments
Websocket Improvements

● Phase 1: Replace socket.io for remote desktop with 
“traditional” websocket

○ Use official guacamole-common-js library
○ Better performance (socket.io nice for simple messaging but not 

optimised for high data rate communication)
○ Single web-server: port 8086

● Phase 2: Implement double websocket
○ One dedicated to remote desktop protocol (second performance gain)
○ Second used as an events channel

■ Remote desktop events, instances states, notifications, etc
○ Polling removed from client

● Development finished early September
○ Production release aimed for October



Development plans
Remote Desktop improvements

● User experience of the remote desktop a priority
○ Lag can be a problem

● Recent developments (Quarkus + double websocket) now 
allow for action to improve performance

○ Quarkus native image for compiled back-end
○ Native websocket allows for pure binary data transfer

● WebX can be tested with pure binary socket
○ socket.io/shared socket prevented some performance gains from 

being propagated to VISA

● Priority to test remote desktop technology
○ Examine solutions such as rustdesk
○ Comparing these to WebX / Guacamole
○ Determine if WebX architecture can be simplified or if a Wayland 

adapter would be useful



Usage metrics
Instance counts

● Generally around 100 instances out of reactor cycle
● About 200 instances during cycles



Usage metrics
RAM Usage

● RAM is limiting factor of VISA usage
○ Maximum regularly achieve during reactor cycle (6.6TB, was 6.1TB)



Usage metrics
Remote Desktop connections

● Usage during cycles clearly important
● Similar number of connections between staff and external users



Thanks!


