
1Karabo Workshop Ivars Karpics, CTRLs

Session 4 : GUI Extensions

2Karabo Workshop: GUI Extensions Ivars Karpics, CTRLs

Karabo GUI

Control and designer modes.

In designer mode: drag and drop device properties to the scene.

Default widgets based on the data type are displayed.

Contains 3 items: property name, display and edit widgets.

Scenes are stored in project or provided by devices.

3Karabo Workshop: GUI Extensions Ivars Karpics, CTRLs

Karabo GUI

Large set of built-in widgets.

Widgets can be changed by right clicking on the widget and

selecting Change Widget.

Based on the data type, display types changes.

Switching between widgets is always possible.

4Karabo Workshop: GUI Extensions Ivars Karpics, CTRLs

GUI Extensions

Karabo GUI Extensions (further extensions) is a python package that compliments Karabo GUI by adding custom tailor
made widgets.

It is not part of Karabo framework and does not follow karabo release/deployment cycle and can be updated at any point.

Gitlab link: https://git.xfel.eu/karaboDevices/guiextensions

5Karabo Workshop: GUI Extensions Ivars Karpics, CTRLs

Solution: Update gui extensions

As the extensions are frequently updated one might miss the latest widgets.

Use Help →Check for Updates to update extensions.

Close and open karabo gui to reload extensions.

6Karabo Workshop: GUI Extensions Ivars Karpics, CTRLs

Karabo GUI development environment

Karabo GUI is installed via conda package manager and dependency tool.

It is written in Python by using PyQt and pyqtgraph libraries.

To prepare the development environment of gui extensions:

1. Clone guiextensions repository

2. Activate conda environment of the Karabo GUI.

3. Install guiextensions python package.

7Karabo Workshop: GUI Extensions Ivars Karpics, CTRLs

Hands on #1 : prepare developer environment

Open terminal

source /opt/miniconda/bin/activate

conda activate karabogui

cd

cd karabo/devices/guiextensions

git checkout workshop

pip install -e .

karabo-gui (might take few sec.)

8Karabo Workshop: GUI Extensions Ivars Karpics, CTRLs

Hands on #2: Change widget to gui extension

Open karabo from terminal and connect with admin rights.

Open project SESSION_4.

Instantiate the middlelayer device KARABO_TEST/MDL/PROPERTY_TEST.

Create a scene SESSION_4_SCENE.

Drag and drop a Float (Min / Max) property on the scene.

Ungroup widgets and change the second widget to Workshop Example 1.

Save project.

9Karabo Workshop: GUI Extensions Ivars Karpics, CTRLs

GUI Extensions: Building blocks

Extension is defined as an entry point in the setup.py

It has to have a data model

And representation widget.

10Karabo Workshop: GUI Extensions Ivars Karpics, CTRLs

Hands on #3: explore gui extension

Open visual code.

Open folder karabo/devices/guiextensions

Open file src/extensions/workshop/display_example_one.py

11Karabo Workshop: GUI Extensions Ivars Karpics, CTRLs

GUI Extensions: Building blocks

Class is decorated with register_binding_controller.

– ui_name appears in the gui.

– klassname should be the same as in setup.py

– binding_type defines data type that the controller will
accept.

Class has to be inherited from BaseBindingController.

Has a model (for storing attributes in project) and internal objects.

Mandotary methods that needs to be implemented:

– create_widget returns PyQt widget object,

– value_update callback when value proxy changes.

12Karabo Workshop: GUI Extensions Ivars Karpics, CTRLs

GUI Extensions: Building blocks

Model can be used to store a gui related configuration in the Karabo project.

Setup.py contains all entry points:

pip install -e . to links the package. Necessary if the entry points in the setup.py change. No need to do pip install if
the extension code changes.

13Karabo Workshop: GUI Extensions Ivars Karpics, CTRLs

Note about libraries: Qt, PyQt, qtpy and traits

Qt is graphical library written is c++, PyQt is wrapper of Qt and qtpy handles various PyQt versions.

QWidget is a base class of all user interface objects (QLabel, QlineEdit, QPushButton, etc.).

Widgets are grouped in layout(s) (QHBoxLayout, QVBoxLayout, QgridLayout).

Traits package is used to ensure data validation.

Hint:

PyQt provides designer tool.

Allows to explore Qt library and create *ui files for complex widgets and layouts.

14Karabo Workshop: GUI Extensions Ivars Karpics, CTRLs

Designer

Activate conda karabo environment and launch designer.

15Karabo Workshop: GUI Extensions Ivars Karpics, CTRLs

Hands on #4

Currently display_example_one.py contains one label that displays a text with attribute value.

Modify widget by adding a value input widget that displays the value.

16Karabo Workshop: GUI Extensions Ivars Karpics, CTRLs

Add QLineEdit (widget for value input) to the imports (line 1).

Add _value_ledit = WeakRef(QLineEdit) to internal objects (After line 18)

Add line edit to the widget and layout (after line 25 and 28):

- self._value_ledit = QlineEdit(parent=widget)

- hlayout.addWidget(self._value_ledit)

Set label and value_ledit text (after line 34):

– self._value_ledit.setText(str(value))

– Solution: git checkout workshop_done (close/open GUI)

– git diff workshop workshop_done

Hands on #4 : steps and solution

17Karabo Workshop: GUI Extensions Ivars Karpics, CTRLs

Property proxies

Property proxy links device attributes with widgets.

It is not the device proxies used in the middlelayer context.

All karabo data types are supported. Including nodes.

Reimplement add_proxy to accept multiple proxies.

add_proxy on success should return True.

value_update will be called if any proxy has been changed.

18Karabo Workshop: GUI Extensions Ivars Karpics, CTRLs

Hands on # 5: Example with two proxies

Drag and drop Float property to the scene.

Change widget to Workshop Example 2.

Drag and drop a String property on top of the widget.

Text appears in the label. Hovering over the widget shows connected proxies.

Open display_example_two.py in visual code.

19Karabo Workshop: GUI Extensions Ivars Karpics, CTRLs

Hands on #6

Modify display_workshop_example_two.py.

Implement basic interactive gui. If the float value is above 100:

– Disable value self._value_edit (use setEnabled()).

– Informe user that manual mode is disabled: Set tool tip of the self._value_edit.

20Karabo Workshop: GUI Extensions Ivars Karpics, CTRLs

Hands on #6 : steps and result

Add code to the value_update:

self._value_ledit.setEnabled(value < 100)

tool_tip = "Manual mode is disabled" if value > 0 else ""

 self._value_ledit.setToolTip(tool_tip)

Solution: git checkout workshop_done (close/open GUI)

Difference: git diff workshop workshop_done

21Karabo Workshop: GUI Extensions Ivars Karpics, CTRLs

An advanced example

Workshop example 3

Nested layouts.

Usage of model attributes (Traits package).

Qt signals and slots.

Setting attributes via proxy.

Handling state_update.

Calling karabo slots and handling response.

KaraboPlotView class.

22Karabo Workshop: GUI Extensions Ivars Karpics, CTRLs

Hands on #7

Drag and drop Float attribute on the scene.

Change widget to Workshop Example 3.

Drag and drop a second Float attribute on the scene.

23Karabo Workshop: GUI Extensions Ivars Karpics, CTRLs

Hands on #8

Modify Workshop example 3

Remove spinbox items

biding_type should accept VectorDouble and VectorFloat attributes.

on_value change verify that vectors have the same length.

On each value update clean scatter graph and plot new points.

24Karabo Workshop: GUI Extensions Ivars Karpics, CTRLs

Hands on #8 : result

25Karabo Workshop: GUI Extensions Ivars Karpics, CTRLs

Further reading

Karabo scenes: https://rtd.xfel.eu/docs/karabo/en/latest/library/gui_scene_development.html

GUI Extensions: https://rtd.xfel.eu/docs/gui-extensions/en/latest/install_latest_version.html

Qt: https://doc.qt.io/qt-5/qtwidgets-index.html , https://doc.qt.io/qt-5/qtwidgets-module.html

PyQt graph: https://www.pyqtgraph.org/

https://rtd.xfel.eu/docs/karabo/en/latest/library/gui_scene_development.html
https://doc.qt.io/qt-5/qtwidgets-index.html
https://doc.qt.io/qt-5/qtwidgets-module.html

26Karabo Workshop: GUI Extensions Ivars Karpics, CTRLs

Take Away

Karabo GUI has a rich set of built-in widgets.

Most of them are adjustable to fit user needs.

Missing gui appearance and complex widgets might be achieved via gui extensions.

Use existing set of Karabo GUI widgets, ask for support/feature or develop your gui extensions.

	This a Headline in two lines Lorem Ipsum esta Dolores ned
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26

