
1Karabo Overview Dr. Gero Flucke, European XFEL, September 27th, 2024

Handling Fast Data through Pipelines
Karabo Developer Workshop 2024

Gero Flucke
(based on slides from Raul Costa)

Controls Group @ European XFEL

Satellite Workshop:

An introduction to developing in the Karabo SCADA Framework

2Karabo Overview Dr. Gero Flucke, European XFEL, September 27th, 2024

Outline

Introduction: Pipelines and their uses

Hands-On Exercises

3Karabo Overview Dr. Gero Flucke, European XFEL, September 27th, 2024

Karabo: Device Based Communication via a Message Broker

Self-describing

Karabo Devices

Equipment control,

e.g. motors, valves,…

Detectors

e.g. cameras

Online data analysis

Data Logging

Other system services

GUI entry point

DAQ for big/scientific

data (not shown)

Message

Broker

Equipment

Control

e.g. motor, pump,
valve, sensor

DAQ

Equipment

e.g. commercial camera

GUI Server

and other service devices
like configuration manager

Analysis

Node

e.g. calibration,
image processing

Data Logging

Node

storage of control data
and configurations

Command Line

Interface

Graphical

User Interface

TCP/IP data

pipelines for

big/fast data

4Karabo Overview Dr. Gero Flucke, European XFEL, September 27th, 2024

Introduction – Pipelines and their Uses

Karabo data can be split in 2 categories:

Slow Data and Fast Data.

Slow Data: exchanged via broker (AMQP)

Device properties (configurations and read-only params)

►Logged by (InfluxDB) data loggers

Instantiations, shutdowns, state changes, …

Fast Data

Sent directly from one device to another (no broker)

High throughputs must be supported

►Camera images, digitizer data

►Saved by the DAQ on request

Camera

Image

Processor

GUI Server

DAQ

5Karabo Overview Dr. Gero Flucke, European XFEL, September 27th, 2024

Introduction – Pipelines and their Uses (ctd.)

Camera

Image

Processor

GUI Server

DAQ

Pipelines:

Direct TCP between two Karabo devices for fast

Data flows

Two ends:

►OutputChannel: produces data

► InputChannel consumes data

Karabo devices can have any number of Input- and

OutputChannels

InputChannel is the active part

Establishes connection to configured

OutputChannel

Main configuration of data flow

Tells OutputChannel that ready to receive more

►Always keeping some data being transferred

6Karabo Overview Dr. Gero Flucke, European XFEL, September 27th, 2024

Hands-On Exercises - Outline

Connect a skeleton MDL device to a simulated camera

Code Part I: Process data sent by the camera

–Step 1: Show the number of frames sent by the camera

–Step 2: Show the min, max and average of the pixels of each frame

–Step 3: Add PROCESSING and ERROR states, handle end-of-stream (optional)

Code Part II: Forward processed data via an output channel

–Step 4: Forward min, max and average of the pixels of each frame

–Step 5: Capture and forward frame timestamp (optional)

–Step 6: Forward camera acquisition cycles (end-of-stream events) (optional)

7Karabo Overview Dr. Gero Flucke, European XFEL, September 27th, 2024

Start Karabo’s Working Environment on the VISA VM

8Karabo Overview Dr. Gero Flucke, European XFEL, September 27th, 2024

Launch and Explore the Simulated Camera

In the VISA VM, activate the Karabo GUI Client and open the project Session_3.

Find the simulated camera device – its name is SIM_BL_SYS/CAM/CAM - and instantiate it.

Double-click on the simulate camera device node in the project tree – the scene for the camera will be displayed. This

scene will be used multiple times throughout the exercises.

In the Configuration Editor, expand the Output property of the simulated camera. This is the camera’s output channel.

Click on the Table Element button in front of the Output > Connections properties – those are the input channels

currently connected to the camera’s output channel. One connection should be present – the connection used by the device

scene to show the camera image.

Still in the Configuration Editor, expand the Output > schema property. This shows how the data the camera sends

through its output channel is structured. Take a look at the Data > Image > Pixel Data path of the schema.

9Karabo Overview Dr. Gero Flucke, European XFEL, September 27th, 2024

Instantiate the Skeleton MDL Device and connect it to the camera

Still in the project Session_3 opened in the previous step, find the device we will be working on, PIPELINE/PROC/1,

and select it (no instantiation yet).

In the Configuration Editor, check that the Input > Configured Connections property has the value

SIM_BL_SYS/CAM/CAM:output. This the ID of the simulated camera output channel, formed by the concatenation of the

DeviceID of the channel hosting device, a ‘:’, and the ID of the output channel.

Check the Output > Connections property of the simulated camera: the connection to PIPELINE/PROC/1:input

should be there. If the simulated camera scene is open, it should be also listed there (image below).

Pressing the Acquire and Stop buttons in the camera scene doesn’t do anything on our device ... not for long!

10Karabo Overview Dr. Gero Flucke, European XFEL, September 27th, 2024

Coding Part I

Process Data Sent by the Camera

11Karabo Overview Dr. Gero Flucke, European XFEL, September 27th, 2024

Step 1 – Show the number of frames sent by the camera

Issue a [> karabo -g https://git.xfel.eu develop karaboWorkshop2024Pipelines]

i.e. git checkout to ~/karabo/devices/karaboWorkshop2024Pipelines and pip install -e

Go to that that directory
[> cd ~/karabo/devices/karaboWorkshop2024Pipelines]

Launch VS code: [> code .]

Trust us ;-)

12Karabo Overview Dr. Gero Flucke, European XFEL, September 27th, 2024

Step 1 – Show the number of frames sent by the camera (ctd.)

The initial version of our camera image processing device already comes with a input channel defined: the

@InputChannel decorator for the async def input coroutine defines an input channel property for the device and

establishes the coroutine as the handler for data received from an output channel.

When the input channel is connected to a camera, each frame sent by the camera will activate the input coroutine

once, passing the frame data via the data parameter. The structure of the parameter matches the schema of the

camera’s output channel. The second parameter, meta, is unused for now; it’ll be used in Step 4.

The task of this step is to add a framesAcquired property of type UInt32 to our device - the number of frames

received from the camera since the device instantiation.

To test your progress, shutdown the device server of our device on the GUI client. As soon as the device server is

back, instantiate the processing device - this syncs the running device with its latest version saved in Visual Studio Code.

[> git diff hands_on_1_initial hands_on_1_done] will display the solution for this step.

13Karabo Overview Dr. Gero Flucke, European XFEL, September 27th, 2024

Step 2 – Show the min, max, and average of the pixels values of each frame

Issue [> git checkout hands_on_1_done] in terminal (in …/karaboWorkshop2024Pipelines directory.

The method async def process_image(self, pixels) currently does nothing. It’s called from the async def

input coroutine, which sends it the pixels of the current frame sent by the camera as the value for the pixels parameter.

The task of this step is to add the properties pixelMean (of type Double), pixelMin (of type UInt16), and

pixelMax (of type UInt16) to our device. Those properties values should be the average, minimum, and maximum

values of the pixels of the most recent frame sent by the camera. Hint: the pixels argument passed to process_image

is an object of type ndarray and has the methods min(), max(), and mean().

[> git diff hands_on_1_done hands_on_2_done] will display the solution for this step.

14Karabo Overview Dr. Gero Flucke, European XFEL, September 27th, 2024

Step 3 (optional) – Add PROCESSING and ERROR states, handle end-of-stream

Do [> git checkout hands_on_2_done].

An end-of-stream event is sent by a camera when it stops acquiring images.

 To handle end-of-stream events, an input channel has to declare

 an async input(self, output_channel_id) method decorated with @input.endOfStream.

The task of this step are:

 Add a PROCESSING state to the device to indicate that data is being received from the camera.

Add an ERROR state to the device to indicate any error while processing data sent by the camera. Error details

 should be shown in the device’s status property. Successful processing data while in ERROR state should take the

 device back to PROCESSING state.

 Handle end-of-stream events from the camera by putting the device back in ON state and indicating that no

processing is taking place by showing IDLE in the device’s status property. Reset the framesAcquired value when

the camera starts a new acquisition cycle.

[> git diff hands_on_2_done hands_on_3_done] will display the solution for this step.

15Karabo Overview Dr. Gero Flucke, European XFEL, September 27th, 2024

Coding Part II

Forward Processed Data Via an Output Channel

16Karabo Overview Dr. Gero Flucke, European XFEL, September 27th, 2024

Step 4 – Forward min, max and average of the pixels of each frame

Do [> git checkout hands_on_4_initial]

We start with the device already with an output channel: its data structure is defined by class DataNode (line 22),

which becomes the field data of class ChannelNode (line 39). Channel Node is then specified as the schema of the

output OutputChannel (line 88).

The task of this step is to forward the values computed for the pixelMean, pixelMin, pixelMax properties of the

device through its output channel. Hint: reinstantiate the device after shutting down its device server. Take a look at the

Output > schema > data property of the device in the Configuration Editor to see how the data must be structured.

Await for the self.output.writeData() coroutine to send the data.

[> git diff hands_on_4_initial hands_on_4_done] will display the solution for this step.

The forwarded content can be seen in the scene PIPELINE_PROC_1_OUTPUT in the same project that has our

device and the simulated camera

17Karabo Overview Dr. Gero Flucke, European XFEL, September 27th, 2024

Step 5 (optional) – Capture and forward frame timestamp

Do [> git checkout hands_on_4_done]

The metadata (data about data) for the data received by an input channel is available as the second parameter of the

async def input handler coroutine – meta parameter in line 50.

The timestamp of the data received can be accessed within the input handler method as

meta.timestamp.timestamp.

The task of this step is to forward the timestamp of the data received by the input channel of our device to its output

channel. Hint: the self.output.writeData call, currently using no argument, supports a keyword parameter called

timestamp which allows specifying a timestamp for the data being written to the output channel.

[> git diff hands_on_4_done hands_on_5_done] will display the solution for this step.

18Karabo Overview Dr. Gero Flucke, European XFEL, September 27th, 2024

Step 6 (optional) – Forward camera acquisition cycles (end-of-stream events)

Do [> git checkout hands_on_5_done].

The task of this step is to forward any end-of-stream event received from the camera to the output channel of the

device. Hint: the output channel has a coroutine that sends an end-of-stream through the channel. For our device it can

be invoked with self.output.writeEndOfStream().

[> git diff hands_on_5_done hands_on_6_done] will display the solution for this step.

