
Karabo Overview

Dr. Gero Flucke

for the Controls group @ European XFEL GmbH

Satellite Workshop:

An introduction to developing in the Karabo SCADA Framework



2Karabo Overview Dr. Gero Flucke, European XFEL, September 27th, 2024

Karabo: Device Based Communication via a Message Broker

Self-describing

Karabo Devices

Equipment control,

e.g. motors, valves,…

Detectors 

e.g. cameras

Online data analysis

Data Logging

Other system services

GUI entry point

DAQ for big/scientific 

data (not shown)

Message

Broker

Equipment

Control

e.g. motor, pump, 
valve, sensor

DAQ

Equipment

e.g. commercial camera

GUI Server

and other service devices 
like configuration manager

Analysis 

Node

e.g. calibration,
image processing

Data Logging

Node

storage of control data
and configurations

Command Line

Interface

Graphical 

User Interface

TCP/IP data

pipelines for

big/fast data



3Karabo Overview Dr. Gero Flucke, European XFEL, September 27th, 2024

Core Components of Karabo
Device

Core controllable object, providing e.g.

►Equipment control: interface to motor, pump, valve, camera, etc.

►Data provider: camera, spectrometer, customized 2D detectors

►Data analysis: calibration, beam position extraction, etc.

►Coordination of other devices (“middlelayer”)

►System service: data logging, GUI server, project (configuration, etc.) database,…

Self-description (schema):

►Properties (read-only, init-only, reconfigurable), commands – device state aware

Device server: Program “hosting” devices (detail: in bound Python API launches them)

Broker: Core (3rd party) component distributing control messages

Command line client (both Python APIs): ikarabo, karabo-cli

Generic, but customizable GUI



4Karabo Overview Dr. Gero Flucke, European XFEL, September 27th, 2024

Karabo Communication Patterns

1-to-1: Request and reply

Device registers methods as “slots”.

Request from remote with up to four arguments

►Reply if done with up to four values.

►Requester can suppress reply (fire-and-forget)

1-to-all: Broadcast

Always fire-and-forget

Still costly, so used rarely:

►System topology: instance new and gone

►Problematic device states (UNKNOWN, ERROR)

Device2Device1

Request

slot

Notify

Notify

Reply

Device1

Device2

Device3

Device4

Call

slot

Notify

Notify

DeviceN



5Karabo Overview Dr. Gero Flucke, European XFEL, September 27th, 2024

Karabo Communication Patterns (ctd.)

Publish/subscribe

Devices (2 & 5) subscribe slots to a remote “signal”.

When signal is “emitted”, 

all subscribed slots are called.

►No publishing overhead for “popular” devices

►Karabo framework is completely event-driven:

regular polling obsolete.

Device1

Device2

Device3

Device4

Emit

signal

Device5



6Karabo Overview Dr. Gero Flucke, European XFEL, September 27th, 2024

Hash: Karabo’s Flexible Data Container
A nested key-value container with attributes:

key: string

► direct nested access: separate key levels by dot: h.get(“key1.key2.key3”),

value: any type,

attributes per value: another key-value container.

Hash available in all three Karabo APIs:

C++

Python

► “Bound” (C++ bindings)

► “Middlelayer” (pythonic)

Serialisation to XML and binary format.

Supported data types:

►Scalars, complex, strings, Hash

and vectors thereof,

► “NDArray” for pipelines,

► “ImageData”: NDArray and meta data



7Karabo Overview Dr. Gero Flucke, European XFEL, September 27th, 2024

Remotely Callable Methods: Slots and Commands

Slots can have up to four arguments and return values

Scalars, bool, string, Hash (and vectors of any of these)

This flexibility should be restricted to framework functionality and some specific protocols

These protocols nowadays usually just use “Hash-in, Hash-out”

Slots exposed in device schema (i.e. exposed to GUI): “commands”

No arguments

►E.g. for motor: 1) set “targetPosition”, 2) execute “move” command

Return value mostly irrelevant/ignored (in doubt return device state?) 

Can be restricted to specific device states

Should quickly return (<< 5 seconds)

Longer actions like slow movements are just “triggered”:

► “move” command sets state to MOVING, starts movement and returns

►when target reached, go back to state ON

► “targetPosition” can be reconfigured again, but not while in state MOVING



8Karabo Overview Dr. Gero Flucke, European XFEL, September 27th, 2024

Timestamps in Karabo

Timestamps consist of three uint64 numbers 

full seconds of unix epoch (since Jan 1st, 1970): “sec”

attoseconds (10-18): “frac”

train id (“tid”) – uniquely identifies each of the 10 Hz 

trains of up to 2700 photon pulses

Stored as Hash attributes of device

properties

Timing sources:

Ideally hardware source synchronized 

with XFEL accelerator timing system

Property update without specified stamp:

► “sec” and “frac” from local system

clock (usually synchronized within few ms via NTP)

► “tid” extrapolated from “signalTimeTick” that provides 

time, train id and train repetition frequency

(distributed at 1 Hz by TimeServer)

µs



9Karabo Overview Dr. Gero Flucke, European XFEL, September 27th, 2024

Karabo Pipelines for Data Processing

Complement broker communication

Using direct TCP/IP connections.

Designed for (large) multi-D data.

Sent only when receiver ready for it.

Serialisation of NDArray avoids

any copies.

Offer flexible configuration

Get copy of all data

or share with others

Drop or queue if receiver slow

GUI server throttles to 2 Hz

…

Camera

Analysis 

Node A

GUI Server

CPU intense

Analysis 

Node B1

CPU intense

Analysis 

Node B2

Collecting

Analysis 

Node C



10Karabo Overview Dr. Gero Flucke, European XFEL, September 27th, 2024

Karabo: Three APIs

C++ (C++17 standard)

The start of Karabo, based on a lot of the boost libraries

(Still) most service devices (data logging, GUI server)

Devices that require high performance (digitizers)

Bound Python

Python bindings on top of C++ (now using pybind11, few things pure Python)

Partially not „pythonic“, but more following underlying C++ patterns

Pipelining more performant than the one of Middlelayer

Middlelayer Python

Complete re-write, based on asyncio

Especially designed to interact with other devices (therefore “middlelayer”)

►Nowadays most popular API, not only for middlelayer devices

Used as macro language (without need for asyncio‘s await)



11Karabo Overview Dr. Gero Flucke, European XFEL, September 27th, 2024

Usage of the Three APIs

Middlelayer API 

often has the most expressive 

syntax

shortest “time-to-market”.

C++ and Python Bound

actively maintained 

new devices are still being 

implemented

► especially in high-

performance fields.



12Karabo Overview Dr. Gero Flucke, European XFEL, September 27th, 2024

Unified Device States

Predefined list of device states

Device schema

can restrict access to its 

commands / reconfigurable 

properties to some states

Inheritance system

E.g. ERROR is more 

concrete than KNOWN

State significance order for 

state aggregation 

Unified colour representation 

in the GUI
About 60 more states inheriting (e.g. GUI colour) from those of the last row.



13Karabo Overview Dr. Gero Flucke, European XFEL, September 27th, 2024

More Device Concepts

European XFEL naming convention, e.g. 

Not enforced by Karabo (but GUI’s “Device Topology”

ignores devices that don’t have 2 slashes)

Device locking

A device can lock other devices to reject commands and

reconfigurations from others

Soft lock on purpose: to avoid operational deadlock, slotClearLock can be called by everybody

Capabilities exposed via “instanceInfo”

provides_scenes, provides_macros, provides_interfaces

Interfaces

motor, multi axis motor, trigger, camera, processor, device instantiator

An interface promises some commands and proeprties

Where is documented what exactly which interface requires? 



14Karabo Overview Dr. Gero Flucke, European XFEL, September 27th, 2024

Generic, Extendible Karabo GUI: 

Separate Python Package

Shares Hash with MDL

Well matched to the framework

PyQt5-based

Connects to Karabo via the GUI-server 

(tcp, point-to-point)

Extendible via “gui-extensions”

Distinguishing features: 

GUI scene builder (drag‘n‘drop)

Projects to logically group devices, 

scenes and macros

GUI Server

Graphical 

User InterfaceBroker



15Karabo Overview Dr. Gero Flucke, European XFEL, September 27th, 2024

GUI as Project Interface

Project data:

device configurations,

scenes,

macros,

sub-projects.

Projects stored in

central data base as XML 

files.

local storage option



16Karabo Overview Dr. Gero Flucke, European XFEL, September 27th, 2024

GUI as Macro Interface

Macros

Aim for (simple) procedures

By scientists

Middlelayer syntax

Run on special macro server

Gives control if macro 

runs havoc

Code injected via GUI

Stored in projects

Output in GUI

More complex and matured 

macros often converted to 

Middlelayer devices



17Karabo Overview Dr. Gero Flucke, European XFEL, September 27th, 2024

System Service:
Service Manager

Special device exposes running services 

(servers) of an installation

Start, restart, stop (kills if needed)

Needs special service running on each 

host with a Karabo installation

Communicates via web protocol with 

service manager



18Karabo Overview Dr. Gero Flucke, European XFEL, September 27th, 2024

Framework Service: Data Logging

In-built data logging and retrieval mechanism.

Control data only, no pipelines.

Implemented via data logger service devices

(text file or InfluxDB time series database).

Main control use cases:

► Past data for trendlines: single scalar property vs time.

► Past configurations: all device properties at point in time.



19Karabo Overview Dr. Gero Flucke, European XFEL, September 27th, 2024

Karabo Data Acquisition (DAQ) Integration

Focus on scientific instrument data with long term storage: 

EuXFEL data policy

Support for different types of data sources:
Control data with train resolution: e.g. sensors, motors  slow data

2D or pulse resolved data: e.g. pipeline from cameras, digitizers

 fast and/or medium sized data

MHz-capable 2D detectors (XFEL train data format - XTDF) 

 big & fast data

Data stored in HDF5 files, indexed per train

9 PB raw data (Oct. '19) stored since experiments started

12 GB/s achieved (600 images per train)

Provide data stream for online display and analysis:

Calibration of big 2D detectors (1.8 GB/s, 2s latency),

External tool via Karabo-to-ZeroMQ bridge

Data Storage

Node
Commercial

camera

MHz-capable

2D detector

Raw Data Generated at EuXFEL 

D
a

ta
 s

iz
e

 (
P

B
) 

Jan.

2018

Jan.

2019

July

2019

July

2018

July

2017

9

8

7

6

5

4

3

2

1


