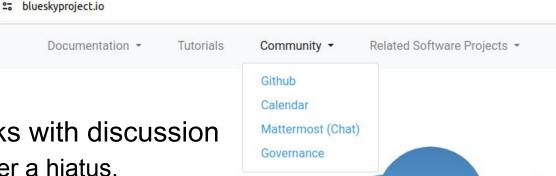

# Bluesky Community Meeting

**Data Acquisition** 


### **Project Updates**

#### **Bluesky Community Update**



National Synchrotron Light Source II

### Meetings



- Invited community talks with discussion
  - Recently restarted after a hiatus, now with a proper Planning Committee
  - Aiming for 1-2 talks / month
  - Movable time (10:30, 18:00 NYC) to catch all time zones
  - Recordings posted publicly
- Weekly "dev" call
  - Issue and PR triage
  - Live discussion on architecture, design, and PR review

#### "Minimum Viable Governance"

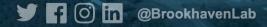
- Repo maintainers make decisions by rough consensus
- If consensus cannot be reached, Technical Steering Committee may intervene and vote if necessary
- Project Advisory Board is a forum for facility management to voice priorities
- github.com/bluesky/governance

### **Project Advisory Board**

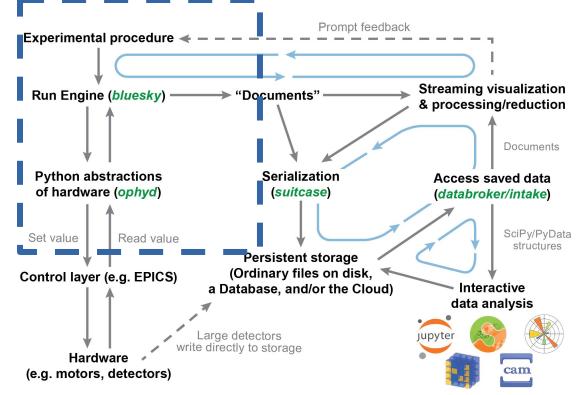
- Alun Ashton (PSI)
- Stuart Campbell (NSLS-II), Chair
- Joe Handford (DLS)
- Mark Heron (DLS)
- Alex Hexemer (ALS)
- Paul Martin (ANSTO)
- Alex Sandy (APS)
- Nicholas Schwarz (APS)
- Jana Thayer (SLAC)
- Stuart Wilkins (NSLS-II)

### **Technical Steering Committee**

- Dan Allan (NSLS-II)
- Thomas Caswell (NSLS-II)
- Tom Cobb (DLS)
- Callum Forrester (DLS)
- Pete Jemian (APS)
- Zachary Lentz (LCLS)
- Dylan McReynolds (ALS)
- Max Rakitin (NSLS-II)
- Clinton Roy (ANSTO)
- Will Smith (HZB)
- Robert Tang-Kong (LCLS)







### Run Engine (Status Update)

Thomas Caswell

December 14, 2023



### What is the Run Engine





### What does Run Engine do? Core loop:

- 1.Consume messages from plan
- 2. Execute command on ophyd object
- 3. Return the results to the plan

Handles:

errors, interrupts, & user feedback
 generating and emitting data

### What is new in RE?

- No backwards incompatible changes from v1.0 in 2017
- Improvements to flyscanning protocols
- Plan decorator
  - Optional decorator to warn if plan is not iterated over
- Timeout on wait
  - Do something else and try again later
- Add ability to pre-declare stream
  - Explicitly forces reading the configuration

### StreamResource and StreamDatum

- Source multiple rows and columns at once
- Significant performance improvements
- Requiressochanigesuto ophyd, bluesky, and Stiled mResource/Stream Datum

| event | A   | В   | С   | D   |
|-------|-----|-----|-----|-----|
| 1     | 5.4 | D01 | D08 | D15 |
| 2     | 3.7 | D02 | D09 | D16 |
| 3     | 6.6 | D03 | D10 | D17 |
| 4     | 7.2 | D04 | D11 | D18 |
| 5     | 1.0 | D05 | D12 | D19 |
| 6     | 5.7 | D06 | D13 | D20 |
| 7     | 2.3 | D07 | D14 | D21 |

| event | А   | В   | С | D   |
|-------|-----|-----|---|-----|
| 1     | 5.4 | SD1 |   | SD2 |
| 2     | 3.7 |     |   |     |
| 3     | 6.6 |     |   |     |
| 4     | 7.2 |     |   | SD3 |
| 5     | 1.0 |     |   |     |
| 6     | 5.7 | ]   |   |     |
| 7     | 2.3 |     |   |     |



### New and flyscan methods

#### . prepare method

- Between "stage" and "kickoff"
- Can be passed parameters
- Call multiple times per stage

#### . collect\_pages method

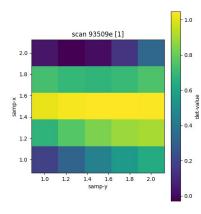
- Get (partial) event pages rather than list of events from flyers

#### . **collect\_asset\_docs** optional index parameter

- Generate StreamResource/StreamDatum only up to a given index
- Useful for aligning multiple devices Brookhaven National Laboratory



# Ophyd Async


**Bluesky Project Update** 

#### Very Short Update, Watch Our Talk!

Wednesday, 11:25

#### Overview

- Replacement for ophyd
- Parity with pymalcolm
- Asyncio
- <u>https://blueskyproject.io/ophyd-async/main/explanations/design-goals.html</u>









#### Roadmap

- Close to 1.0.0 (targeting late 2024/early 2025)
- Generalising to support Tango
- Trajectory scanning
- Finalising API
- Documentation
- https://github.com/bluesky/ophyd-async/milestone/3



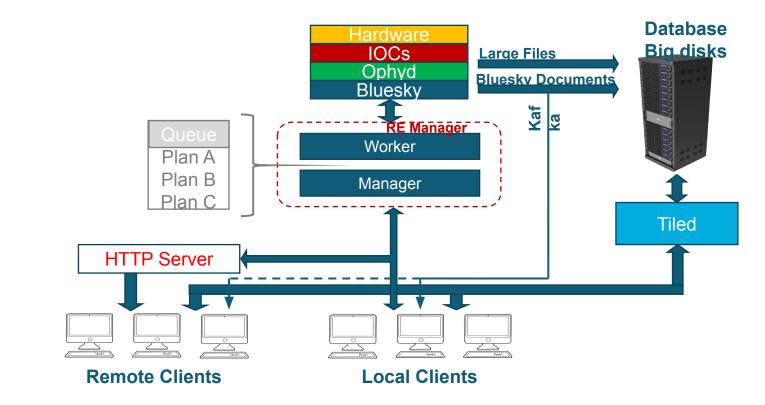


## **Queue Server Update**

Thomas Caswell, Dmitri Gavrilov

September 23, 2024




### What does Queue Server do?

- 1. Manage an environment for plan execution as a service
- 2. API to directly execute plans or Python in the managed process
- 3. Manage a mutable-queue of plans scheduled to be executed
- 4. Enforce access controls to all APIs
- 5. Provide IPython access for debugging and development

Core layer intended to have user facing tools built on top of



### **Queue Server in Architecture**





### **Components of Queue Server stack**

- **Run Engine Manager** (RE Manager) the core component of the stack.
- **HTTP Server** provides REST API for communicating with RE Manager, authentication and access control.
- **Python API** user-friendly Python API for communicating with RE Manager directly (over 0MQ) or via HTTP Server (REST API).
- **RE Widgets** are part of Bluesky-Widgets package. The package also includes a generic ready-to-use 'queue-monitor' Qt GUI application, which supports basic Queue Server workflows.
- Multiple UI Locally developed web apps or desktop applications (we should accumulate a list of these today!)



### **Known Users**

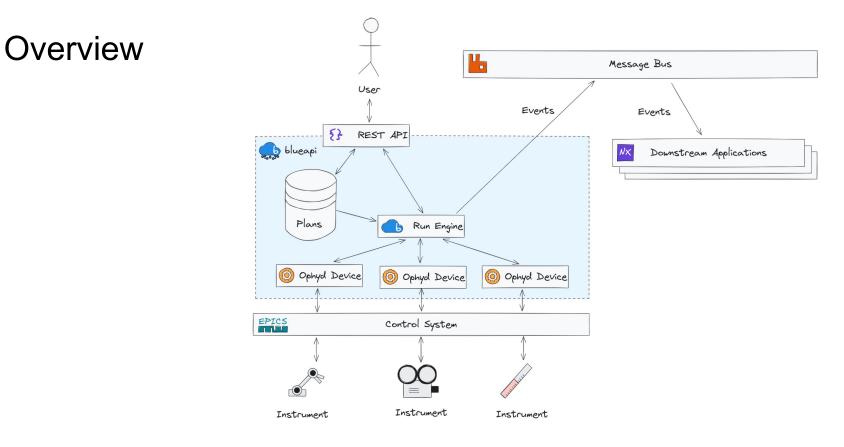
- NSLS-II
- ALS
- SLAC
- APS
- Australian Synchrotron
- BESSY
- Univ. of Wisconsin



### **Documentation**

The **bluesky-queueserver**, **blueskyhttp-server** and **bluesky-queueserver-api** packages are extensively documented:

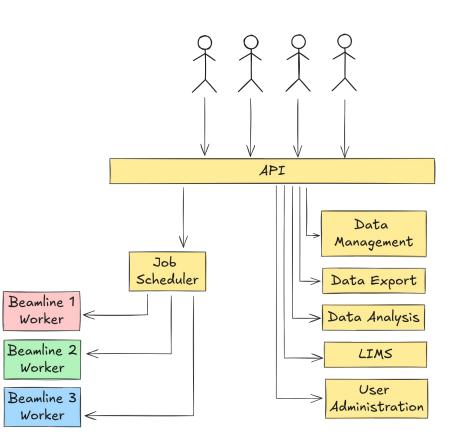
- bluesky-queueserver tutorials, installation instructions, configuration notes, detailed API documentation: <u>https://blueskyproject.io/bluesky-queueserver</u>
- bluesky-httpserver configuration notes, authentication and access control API documentation: <u>https://blueskyproject.io/bluesky-httpserver</u>
- bluesky-queueserver-api API descriptions (also available as docstrings): <u>https://blueskyproject.io/bluesky-queueserver-api/</u>


RE Widgets are documented in code. The `queue-monitor` GUI application can be used as a starting point for developing custom applications.





# Blueapi


**Callum Forrester** 



#### https://github.com/DiamondLightSource/blueapi

#### DLS (Aspirational) Model

- Only run on a beamline what *needs* to run on a beamline
- IOCs, RunEngine
- One service, one job, but not microservices



#### Comparison to Queueserver

- Similar to "Worker" component
- No queue
- No ZMQ layer
- Automated version control (planned)

#### Roadmap

- Close to 1.0.0 (targeting late 2024/early 2025)
- Improved configuration
- Plan customisation UX
- API refinements
- Documentation
- <u>https://github.com/DiamondLightSource/blueapi/milestone/16</u>

2024-09-18

#### *hklpy*: Bluesky Diffractometers Status and Future



Pete R JEMIAN

Physicist Advanced Photon Source Argonne National Laboratory Ken LAUER (original author) Max RAKITIN Padraic SHAFER

NSLS-II Brookhaven National Laboratory





#### hklpy: Bluesky Diffractometer Support

#### Where we are

- Current package hklpy (v1.1.1, 2024-08): <u>https://blueskyproject.io/hklpy/</u>
- Common diffractometer geometries are supported. A local community is forming.
- Scan in real- or reciprocal-space, save & restore orientation (UB matrix)
- Easy to create simulations of any supported diffractometer geometry. Some are pre-built.
- Lots of documentation, including for transition from certain legacy software.

#### Where we are going

- Major upgrade in development now: hklpy2: <u>https://prjemian.github.io/hklpy2/</u>
- Working with Hkl/Soleil developer for new diffractometer geometries. Hklpy & hklpy2 use same backend library.
- Be able to choose backend library from a list. Currently only Hkl/Soleil.
- Lots of documentation (planned).
- Clearer design than (previous) *hklpy*.

#### What we need

- Tools should be much more convenient for both new and experienced users.
- Simplify the process to add a new diffractometer geometry.
- More time to develop hklpy2 for first release.



# Argonne

### Advanced Photon Source

### Facility Updates

National Synchrotron Light Source II



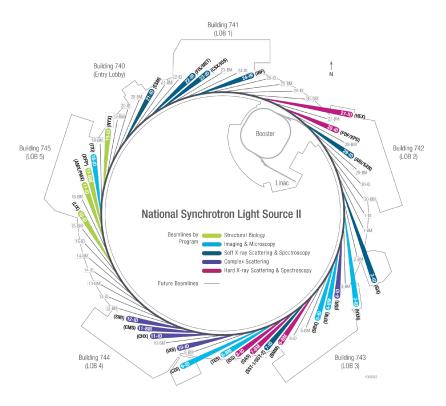


### **NSLS-II Update**

Date



#### **National Synchrotron Light Source II**


#### **U.S. Department of Energy Facility**

- 3 GeV electron beam energy
- Infrared to Hard X-rays
- 792m in circumference
- Designed for current up to 0.5A
- Can host ~ 60 Beamlines;
- Currently 29 in user operations
- 3 beamlines in construction
- 5 more on the drawing board

#### **Unprecedented ramp-up**

- First light October 2014
- GU ops started July 2015
- 27 Operating Beamlines in < 5 years



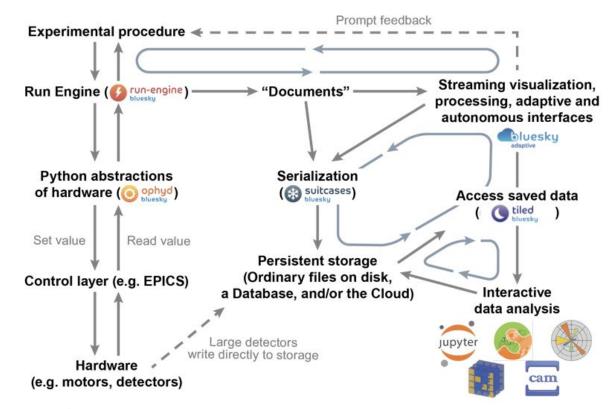


## Who is here at NOBUGS



Stuart Campbell




Dan Allan

Robert Schaffer

Stuart Wilkins (arriving Tues)

National Synchrotron Light Source II

## What parts of bluesky are we using?



## Where are we focusing



- Building the bluesky community
- Adaptive Experimentation
  - Bluesky Adaptive
  - Queueserver
- Tiled
- Fly Scanning

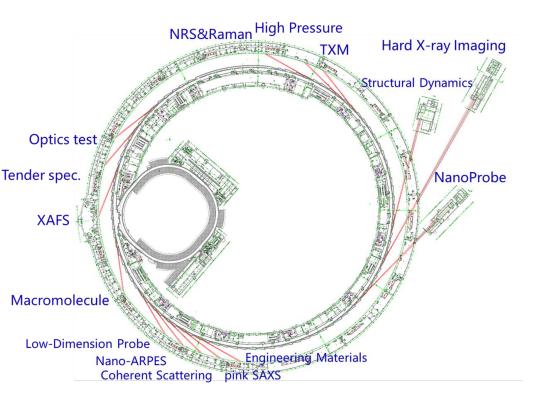




Institute of High Energy Physics

### The *Mamba* software project for **HEPS**

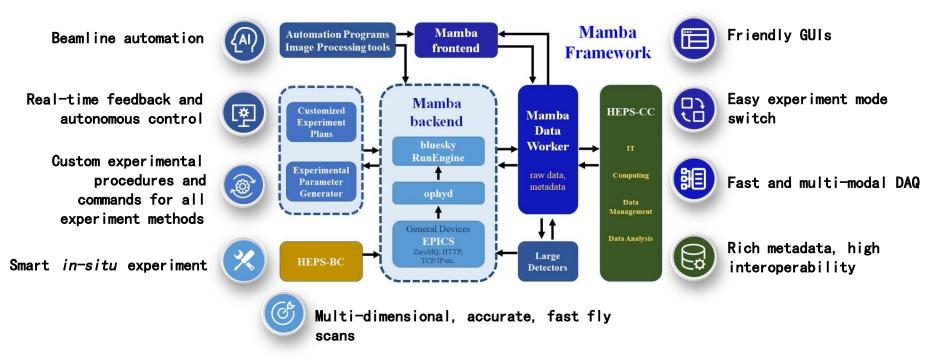



HIGH ENERGY PHOTON SOURCE





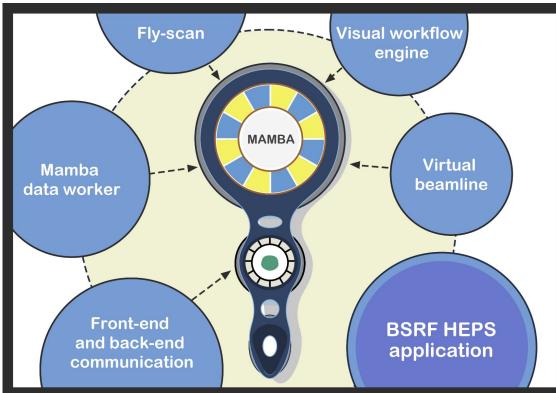
Yi Zhang


### **Phase I project for HEPS**



- 15 beamlines for Phase I project
- Multiple experimental modes and methods for single beamline
- Up to 30 suites of acquisition software delivered by 2025
- Limited personnel and lack of experience
- A systematic solution for all Phase I and future beamlines




## An unified synchrotron experiment operating software system (*Mamba*)

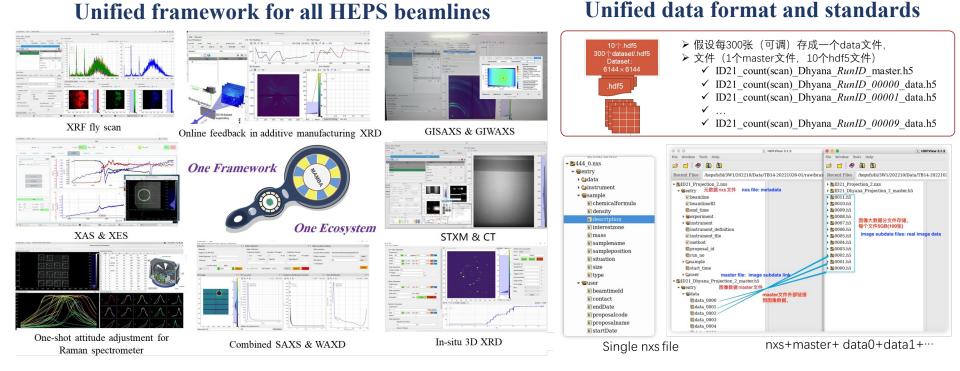




Mamba: a systematic software solution for beamline experiments at HEPS. *Journal of Synchrotron Radiation*, 2022

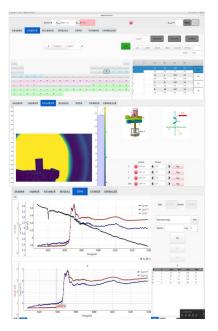
### **Explore key techniques of new generation control and acquisition system** • Already • On going

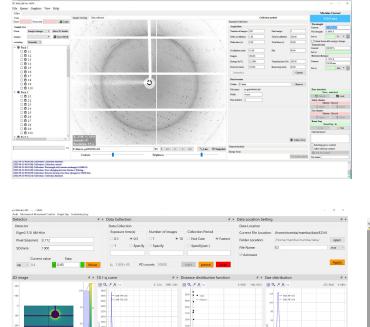


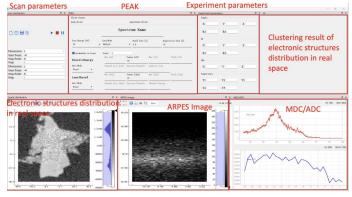

- Python IOC, Systematic detector integration and High-performance readout
- Π Beamline and experiment specific plan and GUI library
- Versatile П attitude tuning framework beamline and automation
- Π Closed-loop control based on real-time data analysis
- Al-Enabled experimental control

Liu et al. J. of Synchrotron Radiat. 29(3), (2022); Zhang et al. J. of Synchrotron Radiat. 30(1), (2023); Li et al. J. of




Synchrotron Radiat. 30(6), (2023); Li et al. Synchrotron Radiat. News, (2023); Wang et al. J. of Synchrotron Radiat, (2024);


### **Progress of** *Mamba* **project**




Leading the way in making scientific data FAIR in China

### **Progress of** *Mamba* **project**









• The first batch of *Mamba* software for *HEPS* beamline is underway



### **Domestic and international collaboration**




Beijing



**China Spallation Neutron Source** Guangdong



Shanghai Synchrotron **Radiation Facility** 



### **Funding from:**

**National Key Research and Development Project of** China;



Scientific Software Union of Chinese **Advanced Light Sources (SUCALS)** 



Shanghai HIgh repetitioN rate XFEL and Extreme light facility (SHINE)



**Radiation Laboratory** Anhui











We are planning to form and develop a nation-wide united scientific software solution in China.



**Internationally, we are looking for collaboration from other synchrotron sources.** 

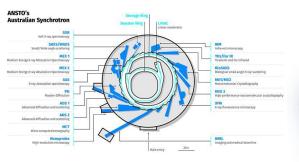




## **Bluesky Satellite Meeting** Data Acquisition

NOBUGS 2024 · ILL & ESRF · Grenoble, France

#### Monday 23<sup>rd</sup> September


Letizia Sammut Senior Scientific Computing Software Enginee Australian Synchrotron, ANSTO

Science. Ingenuity. Sustainability.

## ANSTO

- 3 GeV Machine, first light 2006
- Staff of ~150
- 5500+ visits per year
- 10 original operating experimental beamlines
- 8 new (BRIGHT) beamlines (3 already operating)
- 586 Journal Publications in 2022
- Generate 2.5 PB of data each year
- EPICS









Australian Synchrotron

### Lucas Heights | NSW



Main campus

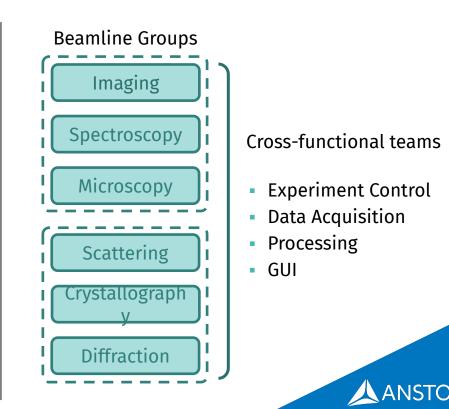


OPAL

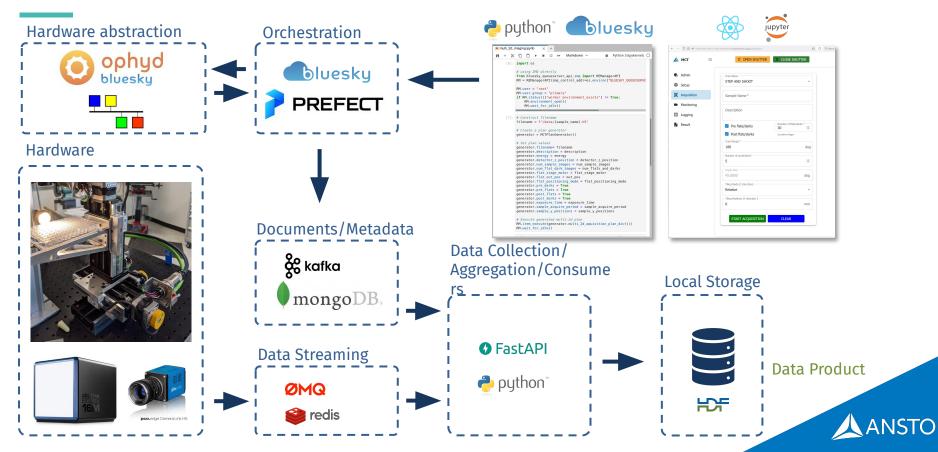
multi-purpose reactor

## The Scientific Computing Team




Scientific Computing founded in June 2017




- Support Science and Users
- Experiment Control
- Data Acquisition
- Data Processing
- Data Analysis



- Our Team
  - 1 manager
- 17 members
  - 1 principal engineer
  - 10 PhDs
  - 47% gender split



## **Data Collection**



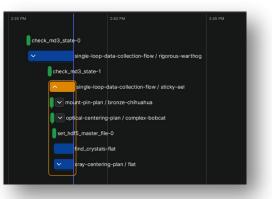
## Example: queue interface

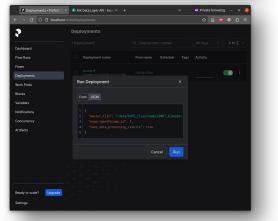
| 🖲 😑 🔺 MEX Beamline                                        | × 🔺 MEX Beam                   | line ×             | 🔺 MEX Beamline | ×   +       |             |                 |          |                     |                        |                 |
|-----------------------------------------------------------|--------------------------------|--------------------|----------------|-------------|-------------|-----------------|----------|---------------------|------------------------|-----------------|
|                                                           | b-ui-stage.mex.beamline.synchr | otron.org.au/queue |                |             |             |                 |          |                     | < ☆ ひ                  | 0 🌑             |
| Operations 🗅 Sharepoint                                   |                                |                    |                |             |             |                 |          |                     |                        |                 |
| 📐 MEX 📃                                                   | Worker Env 🛛 🜌                 |                    |                |             |             |                 |          |                     |                        |                 |
| LEXPeriment Setup                                         | State                          |                    |                |             |             |                 |          |                     |                        |                 |
| C Device Controls                                         | 法                              |                    |                |             |             | No scan running |          |                     |                        |                 |
| Scan Recipe                                               | ► START QUEUE                  |                    |                |             |             |                 |          |                     |                        |                 |
| A Queue Builder                                           | START QUEUE                    |                    |                |             |             |                 |          |                     |                        |                 |
| i Queue                                                   | STOP QUEUE                     |                    |                |             |             |                 |          |                     |                        |                 |
| Ω µ-Trajectory                                            | ABORT SCAN                     |                    |                |             |             |                 |          |                     |                        |                 |
| µ-SDD Oneshot                                             |                                |                    |                |             |             |                 |          |                     |                        |                 |
| µ-Camera Viewer                                           | Queue Contents ir              |                    |                |             |             |                 |          |                     |                        |                 |
| <ul> <li>Scan Simulator</li> <li>Ophyd Example</li> </ul> |                                | Scan Type          | Label          | Positioners | Repeats     | Autorock        | Comment  | Filename prefix     | Added at               |                 |
| Plot Example                                              | ‼ ∽ ??s                        | can_wrapper        |                |             |             |                 |          |                     | 21:10:01<br>2024-02-29 | î               |
| 🕅 Websocket                                               | ₩ ~ ?]s                        | can_wrapper        |                |             |             |                 |          |                     | 21:10:05<br>2024-02-29 | T.              |
|                                                           |                                |                    |                |             |             |                 |          | Rows per page: 10 - | 1–2 of 2 K K           | > >             |
|                                                           | Queue History                  |                    |                |             |             |                 |          |                     |                        |                 |
|                                                           | Status                         | Scan Type          |                | Label       | Positioners | Repeats         | Autorock | Comment Filename    | prefix Finished        | d at            |
|                                                           | ~ Ø 🛙                          | scan_wrapper       |                |             |             |                 |          |                     |                        | 01:22<br>-02-29 |
| * O                                                       | ~ ⊘ 1]                         | scan_wrapper       |                |             |             |                 |          |                     |                        | 00:45<br>-02-29 |

ANSTO

## Thanks



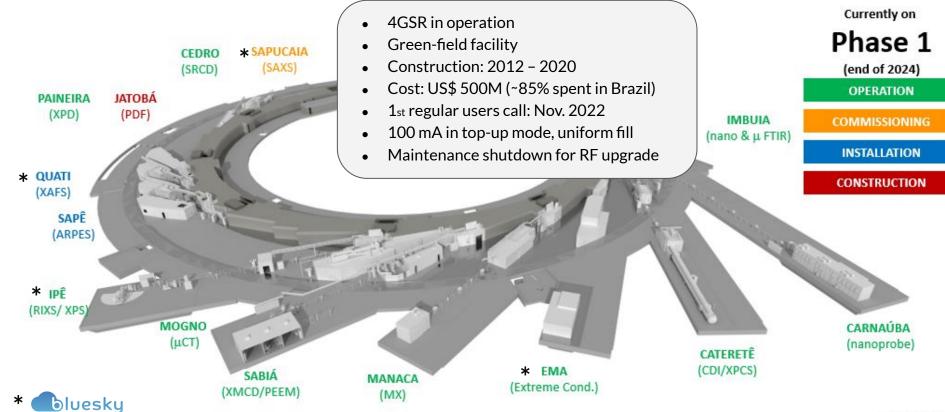

## **Experiment Orchestration with Prefect**


#### Prefect as the main workflow engine

- Bluesky plans are executed as prefect flows using a local Run Engine
- Plans are queued by a parent prefect flow
- The state of all flows can be easily tracked using the Prefect client

#### Advantages

- Visualisation of flows via the Prefect UI
- Fewer services to be maintained
- Easier debugging








## SIRIUS: overview and status





https://www.lnls.cnpem.br/beamlines/

MINISTRY OF SCIENCE TECHNOLOGY AND INNOVATION



## Bluesky at SIRIUS

• Who is here from your facility?

Ana Clara de Souza Oliveira (ana.clara@lnls.br)

Igor Ferreira Torquato (igor.torquato@Inls.br)

- What pieces of Bluesky are you using?
  - Bluesky project packages:

ophyd, bluesky, queueserver, httpserver, queueserverapi, databroker, bluesky-widgets

• Other facilities related initiatives:

ophyd registry

Inspirations from

apstools, haven, psdsdevices

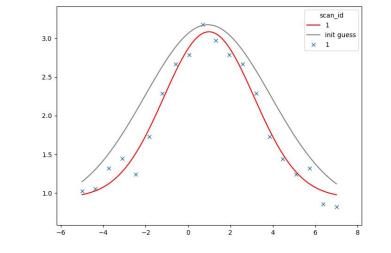
- What topics or future developments are you especially interested in?
  - ergonomic solutions for flyscan (ophyd-async)
  - ergonomic solutions for dynamic signals for devices (ophyd-async)
  - improvements in remote RE control
    - possibility of controlling background tasks as you would with the RE (queueserver)
    - better fast api documentation for routes definition (httpserver)
  - more and better generic data visualization tools (bluesky callbacks)
    - options to interact with the data (plot several curves, choose curves visibility, etc)
    - customize views (choose legends, colors, plot with log axis, etc)
    - more complex views (histograms, 3d plots, etc)
  - web GUI solutions



### A Brief Bluesky Update from ISIS

### (On behalf of ISIS Experiment Controls)




ISIS Neutron and Muon Source www.isis.stfc.ac.uk

() @isisneutronmuon

uk.linkedin.com/showcase/isis-neutron-and-muon-source

### **Dynamic Guesses on Fits**

- Neutron data often has low statistics/low numbers of points.
- To get fitting functions to converge reliably we need better initial guesses than users are able to provide up-front.
- We're dynamically generating initial guesses from the scan data we've collected so far and updating these guesses on every scan point.
- This seems to work quite well in our early prototypes, especially for "easy" fit functions like gaussian peaks etc.





ISIS Neutron and Muon Source 🕀 www.isis.stfc.ac.uk

() @isisneutronmuon

muk.linkedin.com/showcase/isis-neutron-and-muon-source

### **Uncertainty Handling & Propagation**

- Uncertainty propagation is fundamental for neutron data as the counts are often relatively low compared to X-ray sources so uncertainties are much more significant.
- We plan to record uncertainties in output data files which are beneficial for displaying as error bars on plots.
- Passing uncertainties through as weights to fitting functions so that points are weighted correctly according to standard deviation.
- The scipp libraries which are inspired by Xarray (<u>https://scipp.github.io/</u>, <u>https://github.com/scipp/scippneutron</u>) are of interest to help deal with uncertainty propagation and lightweight unit conversions from neutron time-of-flight to wavelength or energy etc.



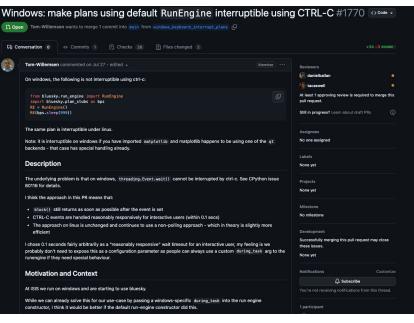
ISIS Neutron and Muon Source 🛱 www.isis.stfc.ac.uk

(O) @isisneutronmuon

uk.linkedin.com/showcase/isis-neutron-and-muon-source

### **Running Windows**

- Running on windows has raised a few issues in both Bluesky and Ophyd-async.
- Some PRs have already been submitted upstream, but there is more to follow in time from Experiment Controls.


ISIS Neutron and

Muon Source

www.isis.stfc.ac.uk

() @isisneutronmuon

m uk.linkedin.com/showcase/isis-neutron-and-muon-source



### The Not So Novel Stuff We're Doing

- Using Ophyd-async to communicate Bluesky back and forth with EPICS.
- Having a "Core" repo for common devices, plan stubs and RE configuration etc.
- A beamline specific configuration is likely to live in existing areas "owned" by science groups.
- Basic scans such as 1-D step-scans for the most part, maybe ramp scans in a few places.
- Currently not using queue server/blueapi solution, just running interactively.
  - Not necessarily excluding this route in the future through...
- Already have matplotlib built into IBEX and this seems to work with Bluesky plotting callbacks.



ISIS Neutron and

Muon Source

www.isis.stfc.ac.uk

( ) @isisneutronmuon

uk.linkedin.com/showcase/isis-neutron-and-muon-source

### **General Design Mentality**

- In general, we are trying our best to stay in-line with Bluesky's intended usage of Bluesky as best as possible.
- Some aspects of our implementation may go against this, but this is to be expected when trying to fit a new framework in with a long standing controls software project.



ISIS Neutron and Muon Source 🕀 www.isis.stfc.ac.uk

(O) @isisneutronmuon

uk.linkedin.com/showcase/isis-neutron-and-muon-source



### **BLUESKY AT DESY**

Development of Tango support for Ophyd-Async and structured metadata for operando catalysis

Devin Burke on behalf of DESX and the ROCK-IT project

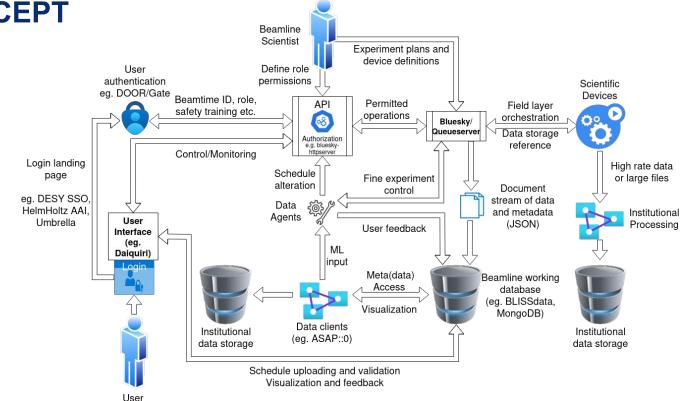






### OUR USE OF BLUESKY IS MOTIVATED BY THE ROCK-IT PROJECT

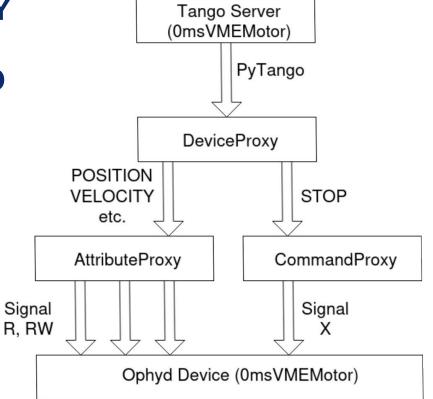



Project Goals

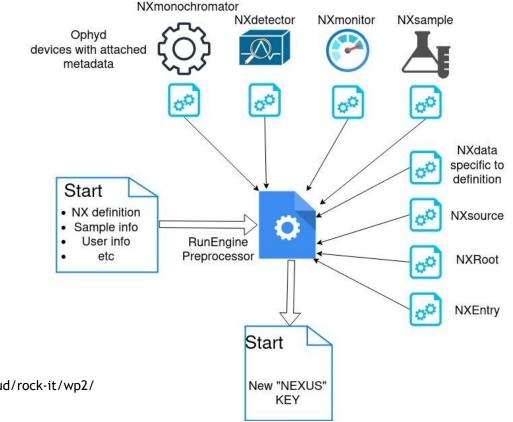
- Create user-friendly automated experiment
   environments for non-experts and industry users.
- Extend in-situ and operando mail-in experiment capabilities with remote access.
- Improve instrument accessibility by enabling remote experiment control via web browser.
- Develop a general purpose set of tools which can be easily transferrable to new types of instruments and experiments.
- Implement machine-learning for automated experiments, real-time analysis, and robotic sample handling.



### BLUESKY AND THE QUEUESERVER WILL FORM THE CORE OF THE ROCK-IT AUTOMATION CONCEPT






### USE OF BLUESKY AT DESY IS ENABLED BY DEVELOPMENT OF TANGO SUPPORT FOR OPHYD-ASYNC

### (CURRENTLY UNDER REVIEW)



### IN COLLABORATION WITH HZB WE ARE PROTOTYPING NEW METHODS OF SERIALIZING FILE STRUCTURES



https://codebase.helmholtz.cloud/rock-it/wp2/ structured\_metadata **ROCK-IT** 

### INTERFACING THE QUEUESERVER API WITH BLISSDATA ENABLES GRAPHICAL CONTROL VIA DAIQUIRI

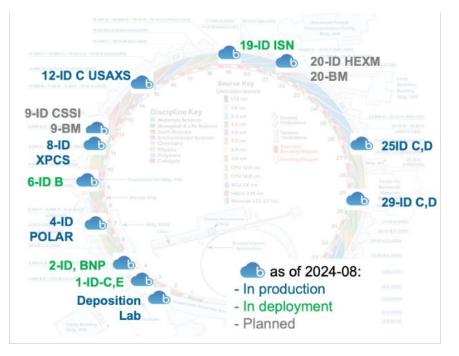
| $\rightarrow$ | 08                                         | haso306s:8089 |                             |            |     |                                       |                 | ☆ Q Searc                                  | :h                                         |        | ${igodot}$ | 🤠 💿 É        |
|---------------|--------------------------------------------|---------------|-----------------------------|------------|-----|---------------------------------------|-----------------|--------------------------------------------|--------------------------------------------|--------|------------|--------------|
| quiri         | UI: bl                                     |               |                             |            |     | dmc_energy<br>10007                   |                 |                                            |                                            |        | Hi,Test TU | <b>4</b> 🔒 8 |
|               | Sample: sample1<br>Success Failed Children |               |                             |            |     | 💠 🛛 + New Scan                        | Scans<br>Follow |                                            |                                            |        |            |              |
|               | ld Start ↑↓                                | Took † 1      | Status $\uparrow\downarrow$ | Scan       | #DC | Type † ↓                              | Title           | Start                                      | End                                        | Points | Count Time | Status       |
| )             | 27 28-05-2024 14:02:55                     | 14 sec        | Failed                      |            | 1   | experiment 🛛 🗖                        | xafs_p651       | 30-05-2024 16:04:50                        | 30-05-2024 16:08:20                        | 0      | 1          | FINISHED     |
|               | 26 28-05-2024 11:29:48                     | 13 sec        | Finished                    | 3500723519 | 1   | experiment                            | xafs_p651       | 30-05-2024 15:51:25                        | 30-05-2024 15:55:10                        | 0      | 1          | FINISHED     |
|               | 25 27-05-2024 13:54:30                     | 2 min         | Finished                    | 3572512164 | 1   | experiment a                          | xais_pool       | 30-05-2024 15:45:33                        | 30-05-2024 15:49:18                        | 0      | 1          | FINISHED     |
|               |                                            |               |                             |            |     |                                       |                 | 27-05-2024 13:54:31                        | 27-05-2024 13:56:08                        | 100    | 1          | FINISHED     |
|               | 24 27-05-2024 13:41:39                     | 1 min         | Failed                      |            | 1   | experiment                            |                 | 27-05-2024 13:41:41                        | 27-05-2024 13:42:57                        | 100    | 1          | FINISHED     |
|               | 23 27-05-2024 12:56:59                     | 1 min         | Failed                      |            | 1   | experiment o                          |                 | 27-05-2024 12:57:01                        | 27-05-2024 12:58:14                        | 100    | 1          | FINISHED     |
|               | 22 27-05-2024 12:27:03                     | 1 min         | Finished                    | 413161991  | 1   | experiment                            | scan7           | 27-05-2024 12:27:04                        | 27-05-2024 12:28:16                        | 100    | 1          | FINISHED     |
|               | 21 27-05-2024 12:24:26                     | 1 sec         | Falled                      |            | 1   | experiment Q                          | scan6           | 24-05-2024 15:37:05                        | 24-05-2024 15:38:19                        | 100    | 1          | FINISHED     |
|               | 20 24-05-2024 15:37:04                     | 1 min         | Finished                    | 3291006628 | 1   | experiment o                          | sourio          | 23-05-2024 16:51:24<br>23-05-2024 16:49:41 | 23-05-2024 16:52:31<br>23-05-2024 16:50:47 | 100    | 1          | FINISHED     |
| Sc            | 19 23-05-2024 16:55:23                     | 1 sec         | Failed                      |            | 1   | experiment                            |                 | 20 00 2024 10,40,41                        | 20 00 2024 10.00.47                        | 100    | 5          | PINISHED     |
|               | 10 20 00 2024 10.00.20                     | 1000          |                             |            |     | onpolition 0                          |                 |                                            |                                            |        |            |              |
|               | Scalar Plot                                |               |                             |            |     |                                       | Spectra Plot    |                                            |                                            |        |            |              |
|               | Axes - Series - Points                     | All (0) Page  | 4 3                         |            | 0   |                                       | Point           | 84                                         |                                            |        |            |              |
|               |                                            | 1             | -                           |            | -   | -                                     | No curve data   | Please select a series.                    |                                            |        |            |              |
|               |                                            |               |                             |            |     | - 13-counts<br>monochromator-position |                 |                                            |                                            |        |            |              |
|               | 60+4                                       |               |                             | -          | -   |                                       |                 |                                            |                                            |        |            |              |
|               |                                            |               |                             | -          |     |                                       |                 |                                            |                                            |        |            |              |
|               |                                            | ~ /           | -                           |            |     |                                       |                 |                                            |                                            |        |            |              |
|               | 40+4 -                                     |               |                             |            |     |                                       |                 |                                            |                                            |        |            |              |
|               | 1 ~                                        |               |                             |            |     |                                       |                 |                                            |                                            |        |            |              |
|               |                                            |               |                             |            |     |                                       |                 |                                            |                                            |        |            |              |
|               | 2.11                                       |               |                             |            |     |                                       |                 |                                            |                                            |        |            |              |
|               | 20+4                                       |               |                             |            |     |                                       |                 |                                            |                                            |        |            |              |

**CK-IT** 



### Thank you for your attention! Devin Burke (DESY / WP2) <u>devin.burke@desy.de</u>

# Argonne APS Data Acquisition Facility Updates


Eric Codrea

### Who is attending on behalf of the APS?

- Eric Codrea
- Fanny Rodolakis
- Hannah Parraga
- Nicholas Schwarz

### What is currently going on at Argonne?

- More deployment (We are in an installation phase)
- Copier template (testing and rollout)
- APStools:
  - APSu device support continues to grow
- HKLPY
  - Common diffractometer geometries are supported. A local community is forming.
  - Scan in real- or reciprocal-space, save & restore orientation (UB matrix)
  - Easy to create simulations of any supported diffractometer geometry. Some are pre-built.



### What we are looking to do?

- We are not using writable tiled servers
  - As a result -> Databroker 1.2.5
- Begin Using Kafka
- Ophyd Async
- HKLPY
  - Working with Hkl/Soleil developer for new diffractometer geometries. Hklpy & hklpy2 use same backend library.
  - Be able to choose backend library from a list. Currently only Hkl/Soleil

#### What we are eager to hear more about?

- Happi Integration
- Deployment Methodology
- Generic Visualization Tools for Beamline Staff
- User-facing tools for Beamline Staff

## ACKNOWLEDGEMENTS

Bluesky Contributors that weren't able to attend:

- Peter Jemian
- Mark Wolfman

**HKLPY Contributors:** 

- Peter Jemian
- Ken Lauer
- Max Rakitin
- Padraic Shafer

#### **BESSY II - Bluesky Status Update**

This week @ NOBUGS 2024:

Luca Porzio: Beamline Control System Engineer
William Smith: Beamline Control System Engineer
Sonal R. Patel: Data Steward
Peter Wegmann: Sample Environment Control System

Status:

- 8 Beamlines / 9 experiments running Bluesky

- **4 more beamlines** planned for this year

- Bluesky support for *ROCK-IT* Project (https://www.rock-it-project.de/) Bluesky Components in use:

- **ophyd** for HW Abstraction Layer
- RunEngine for plan execution
- **tiled** for data access with connection to *MongoDB*
- suitcase for file export
  - CSV Files
  - SPEC Files
- **queueserver** for plan management

Custom integrations:

- **HAPPI**: device instantiation and indexing

(https://pcdshub.github.io/happi/v2.5.0/)

- PyQT GUI for queueserver
- Containerised environment

HZB Helmholtz Zentrum Berlin

Future Developments and interests:

- queueserver improvements
- **ophyd-async** for HW triggered scanning
- data access best practices
- Automatic data export to NeXus
- **Daiquiri** for web UI (https://ui.gitlab-pages.esrf.fr/daiquiri/)

## Bluesky at Advanced Light Source Bluesky Satellite Meeting NOBUGS 2024

#### Seij De Leon

Computer Systems Engineer September 23rd, 2024







# **ALS Overview**

- -3rd gen synchrotron
- -40 beamlines (28 run by ALS)
- -230+ staff
- -7+ Computing Staff
- -7+ Beamline Controls Staff
- -ALS-Upgrade (Mid 2026)



- Mixture of LabVIEW, EPICS/Bluesky, others.



# ALS Staff @ NoBUGS 2024

## **Dylan McReynolds**

#### **Computing Systems Engineer**



#### Seij De Leon

#### **Computing Systems Engineer**







Databroker jupyter NeXus Tender SAXS / FastXAS (5.3.1) Databroker Tiled S ADVANCED LIGHT SOURCE

# **Bluesky Data Access**

COSMIC Scattering (7.0.1.1)

AMBER (6.0.1)

MLExchange

BERKELEY LAB

# **Interested Future Bluesky Developments**

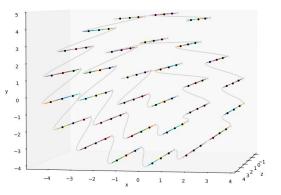
- Async Tiled Client
- Dedicated Zarr Endpoint in Tiled
- Expanded Tiled Web Client
- Dedicated Javascript/Typescript Tiled Client
- Built-in downsampling in Tiled





# **Diamond Light Source**

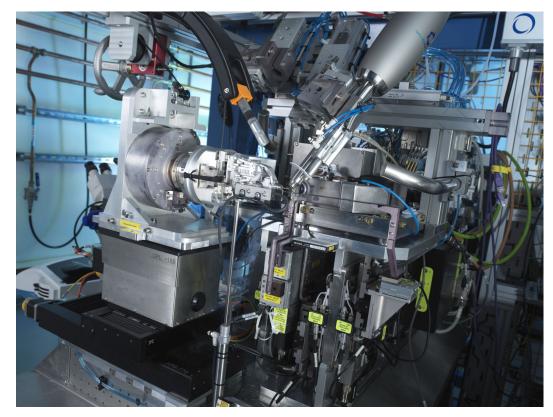
**Data Acquisition** 


## Diamond

- UK national synchrotron
- Storage ring upgrade: 2027-29
- Flagship beamline programme: 2028-2030
- Software modernisation programme: 2022-2030
- Bluesky Technical Steering Committee/Board of Governance

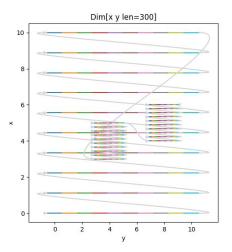


#### Flyscanning


- Flagship beamline: SWIFT
- Already in use at most beamlines
- <u>https://github.com/DiamondLightSource/pymalcolm</u>
- More flexible system required for long-term






#### **Unattended Data Collection**

- Flagship Beamline: K04
- ~75 seconds per sample
- Executing sub-plans in parallel



#### **Flexible Experiment Procedures**

- Flagship Beamline: CSXID
- Editable python (plans)
- Adaptive scanning

