
23/09/2024PyFAI user meetingPage 1

Python Fast Azimuthal Integration tool-set

PyFAI user meeting 
NoBugs 2024 satellite meeting

Jérôme Kieffer*

Edgar Gutierrez-Fernandez
Maciej Jankowski

Algorithms & scientific Data Analysis



23/09/2024PyFAI user meetingPage 2

Layout 

● Power diffraction and scattering of X-Rays
● What is azimuthal integration of 2D detector data ? 
● The need for faster data processing … 
● … without compromising quality
● PyFAI: latest news
● Conclusions 

  



23/09/2024PyFAI user meetingPage 3

X-ray scattering experiments
Source: Wikipedia 
CC-BY-SA: Jeff Dahl

X ray
Monochromatic 

2D camera
● Light is reflected on crystallites as on mirrors: 

– No energy change (elastic scattering)

– Direction of diffracted beam depends on the crystalline cell and its orientation

– Intensity of the diffracted beam depends on the the content of the cell

→ Bragg’s Nobel price in 1915
● Multiple small crystals (powder)

– Isotropic cones gives ellipses
when intersected by a flat detector

Ice ring: diffraction
from powder

Sample

Bragg spots: 
diffraction from 
single crystal

Source: Wikipedia 
Klaus-Dieter Liss



23/09/2024PyFAI user meetingPage 4

Powder diffraction and  small angle scattering
Application of powder diffraction:

– Phase identification (mapping)
– Crystallinity
– Lattice parameters
– Thermal expansion
– Phase transition
– Crystal structure
– Strain and crystallite size 

Application of small angle scattering
– Micro/nano-scale structure
– Particle shape 
– Protein domains
– Protein folding
– Colloids 
– Fiber orientation

● Both rely on the same transformation: 2D image → azimuthal average

Azimuthal

integration



23/09/2024PyFAI user meetingPage 5

Fast Azimuthal Integration using Python

● Why Python ? 
– It is the main programming language used in science and at ESRF: Bliss, PyMca, …

● But isn’t Python slow ?
– Maybe … Python is just a convenient interface, what matters is written in C & compiled



23/09/2024PyFAI user meetingPage 6

rmin rmax

Radial bin

Pixels falling into the radial bin
(without pixel splitting)

● Pixel-wise corrections:

Where: I0 is the incoming flux (pixel independent)

– Iraw and Idark are the signal measured from the detector 
– F is the flat-field correction
– Ω is the solid angle for this pixel
– P is the polarization factor
– A is the parallax correction factor

● Averaging over a bin defined by the radius r:
– Need for pixel splitting?

– ci being the fraction of the pixel i contributing to binr

● Associated uncertainty propagation:
– Assuming there is no correlation between pixels

– Pixel splitting can create correlation between bins...

I cor=
I raw−I dark
F⋅Ω⋅P⋅A⋅I 0

= signal
normalization

How it works 

⟨ I ⟩r=
∑
i∈binr

c i⋅signal i

∑
i∈binr

c i⋅normalizationi

σ (⟨ I ⟩r)=
√ ∑
i∈bin r

c i
2⋅variancei

∑
i∈binr

c i⋅normalizationiMath from Kieffer et al.; J. Synch. Radiation (2020)
 https://doi.org/10.1107/S1600577520000776

σ (I r)=√ ∑
i∈binr

c i
2⋅variance i

∑
i∈binr

c i
2⋅normalizationi

2

https://doi.org/10.1107/S1600577520000776


23/09/2024PyFAI user meetingPage 7

Many different tools exist … 

Name License Institute Language Last 
release

PyFAI MIT ESRF Python 2024
FIT2D MIT ESRF Fortran 2016
XRDUA GPL U. Antwerp IDL 2021
Dawn EPL Diamond Java 2024
DataSqueeze $$$ U. Pens. Java 2023
Foxtrot Free Soleil Java 2023
Maud Free U. Trento Java 2023
GSAS-II Free APS Python 2023
Scikit-beam BSD BNL Python 2023
AzInt MIT MaxIV Python 2023
SaxsDog GPL U.Graz Python 2022



23/09/2024PyFAI user meetingPage 8

Concepts in PyFAI
● Image

2D array of pixels as numpy array
read using silx, fabio, h5py, ...

● Azimuthal integrator: core object
● powder diagram using integrate1d
● “cake” image, azimuthally regrouped  using integrate2d

● Detector
● Calculates the pixel position (center and corners)
● Calculates and stores the mask of invalid pixels.

→ saved as a HDF5 file
● Geometry

Position of the detector from the sample & incoming beam
→ saved as PONI-file

http://www.silx.org/doc/pyFAI/dev/geometry.html#detector-position

http://www.silx.org/doc/pyFAI/dev/geometry.html#detector-position


23/09/2024PyFAI user meetingPage 9

Geometry in pyFAI

From the sample's point of view,
looking towards the detector :

 ↗ rot1: moves detector → to the right 
 ↗ rot2: moves detector  ↓  downwards 
 ↗ rot3: moves detector   clockwise  ↷

rot2

Incoming X-Rays
Origin: 
sample

x3

x1

x2

Distance

Point Of Normal Incidence :

PONI = (P1, P2, P3=0)

d1

d2

d3

rot1

rot3

                   Scattered beam

2θ

Detector's origin: 
lower left, looking from 

the sample

PONI-file

Beam center

Area detector

Parameters: 
* 3 distances in meters: dist, poni1, poni2
* 3 rotations in radians: rot1, rot2, rot3

+ wavelength || energy



23/09/2024PyFAI user meetingPage 10

● Geometry is best determined from the analysis of a known reference sample
● This calibration step is preferred to measuring distances and beam center 

position
– The prerequisite is:

● detector geometry and mask,
● calibrant (LaB6, CeO2, AgBh, …) 
● wavelength or energy used

– Only the position of the detector and the rotation needs to be refined:
● 3 translations: dist, poni1 and poni2

● 3 rotations: rot1, rot2, rot3

● It is divided into 4 major steps:

1) Extraction of groups of peaks

2) Identification of peaks and groups of peaks belonging to same ring

3) Least-squares refinement of the geometry parameters on peak position

4) Validation by a human being of the geometry
● PyFAI assumes this setup does not change during the experiment

Calibration in pyFAI



23/09/2024PyFAI user meetingPage 11

What happens during an integration
1) Get the pixel coordinates from the detector, in meter. 

There are 3 coordinates per pixel corner, and usually 4 corners per pixel.

1Mpix image → 48 Mbyte ! 

2) Offset the detector's origin to the PONI and rotate around the sample

3) Calculate the radial (2q) and azimuthal (c) positions of each corner

4) Assign each pixel to one or multiple bins.

If a look-up table is used, just store the fraction of the pixel.

Then for each bin sum the content of all contributing pixels.

5) Histogram bin position with associated intensities

6) Histogram bin position with associated normalizations (i.e. solid angle)

7) Return bin position and the ratio of  sum of intensities / sum of norm.



23/09/2024PyFAI user meetingPage 12

Example of simplified implementation in Python



23/09/2024PyFAI user meetingPage 13

But speed does matters ...
● New EBS source

– 50x brighter
– User mode since 2020

● Faster detectors
– Eiger2 detector (2-20 kHz)
– Jungfrau detector (2 kHz)

→ Stream limited to 2 GB/s/detector !

Source: UCLA Coherent Imaging



23/09/2024PyFAI user meetingPage 14

The gap between computing and acquisition grows
● Most other codes use the same algorithm based on histograms …

… and reach the same speed:
– Fit2D written in Fortran
– SPD written in C
– Foxtrot written in Java

● The algorithm needs to be changed !

– Histograms cannot easily/efficiently be parallelized ! 
– Re-develop based on parallel algorithms 

→ CSR sparse matrix dot product is many-core friendly
Described in https://arxiv.org/abs/1412.6367v1 (2014)

– Several projects copied this idea: 
● Saxsdog https://arxiv.org/abs/2007.02022 (2020), 
● MatFRAIA https://doi.org/10.1107/S1600577522008232 (2022)

https://arxiv.org/abs/1412.6367v1
https://arxiv.org/abs/2007.02022
https://doi.org/10.1107/S1600577522008232


23/09/2024PyFAI user meetingPage 15

Look-up table integration using only Python

Sources of this demo available on:
https://gist.github.com/kif/ab37c61351d8238f90245b0afb56192e

https://gist.github.com/kif/ab37c61351d8238f90245b0afb56192e


23/09/2024PyFAI user meetingPage 16

Advantages of histograms vs matrix multiplication

● Easier to understand
● Low memory consumption
● Fast initialization

● Faster, even on a single core
● Many-core friendly

– OpenMP and OpenCL  

● Pretty slow 
● Hardly parallelizable

● Slower initialization
● The sparse matrix can be large

Histograms Sparse matrix multiplication

Pro

Con

Rule of thumb: < 5 frames ≥ 5 frames



23/09/2024PyFAI user meetingPage 17

Benchmark: Let’s speak about speed !

6-year-old workstation: CPU from 2016, GPU from 2013



23/09/2024PyFAI user meetingPage 18

Moiré effect

High frequency noise issue

Where pixel splitting comes back



23/09/2024PyFAI user meetingPage 19

Example with SAXS data integrated in 2D

Pilatus 200k: 
~500 x 400 pixels

2D averaging      over 512x360 bins

Without pixel splitting With pixel splitting

⚠️ creates bin cross-correlation ⚠️ 



23/09/2024PyFAI user meetingPage 20

Pixel splitting schemes available in pyFAI
● No pixel splitting: default histograms

– Each pixel contributes to a single bin of the result
– No bin correlation but noisy
– The pixel has no surface: sharpest peaks

● Bounding-box pixel splitting
– The smoothest integrated curve
– Blurs a bit the signal

● Pseudo pixel splitting (deprecated)
– Scale down the bounding box to the pixel area, 

before splitting. 
– Good cost/precision compromise, similar to FIT2D

● Full pixel splitting
– Split each pixel as a polygon on the output bins. 
– Costly high-precision choice



23/09/2024PyFAI user meetingPage 21

Impact of pixel splitting on integration speed
● Histogram based algorithms:

– Each pixel is split over the bins it covers.
– The corner coordinates have to be calculated (4x slower initialization)
– The slow down is function of the oversampling factor, for every image

● Sparse matrix multiplication based algorithms
– The sparse matrix contains already the pixel splitting scheme
– Longer initialization time related to the oversampling factor
– There are NO performance penalty on the integration itself

All those consideration are independent of the programming language

Nevertheless, Python which is interpreted is expected to be 1000x slower than:
● compiled code like C, C++, Fortran, ...
● JIT compiled code like Java, Julia or numba



23/09/2024PyFAI user meetingPage 24

Latest news from pyFAI (2022)

● High speed sigma-clipping
– Enforce normal distribution in every azimuthal bin :

● Remove single crystal contribution from powder diffraction
● Several error models: poissonian, azimuthal, hybrid

– Enables:
● Single crystal frame compression (2x-20x, lossy compression)
● Peak-finding: 250 Hz / GPU

– Sponsored by serial crystallography (ESRF ID29, MX) 
● Kieffer & al. (2024) J.Appl.Cryst accepted

● Square out all integration engines:
– Any type of integration: 1d (averaging) and 2d (caking)
– Any type of pixel-splitting: without, bounding-box or full splitting
– Any type of algorithm: histogram or sparse matrix multiplication
– Any type of implementation: Python, Cython (C++) and OpenCL (GPU)



23/09/2024PyFAI user meetingPage 25

Latest news from pyFAI (2023)
● Orientation management

– Allows to flip the detector V/H
– Compatibility with Dioptas
– New orientation tag:

● PyFAI’s default is 3
● Dioptas’s default is 2

● Grazing incidence representation q// & q┴:
– Thanks to Edgar 



23/09/2024PyFAI user meetingPage 26

Latest news from pyFAI (2024)
● Ewoks integration

– Lot of improvement in the `worker`
– Tutorial tomorrow morning by Wout & Loïc

●  Mapping
– Visualization tool thanks to Loïc & Edgar



23/09/2024PyFAI user meetingPage 40

Acknowledgments
● Algorithm & Data Analysis group

– Edgar Gutierrez-Fernandez
– Maciej Jankowski
– V. Armando Sole
– Vincent Favre-Nicolin

● Data analysis unit colleagues:
– Valentin Valls
– Loïc Huder
– Thomas Vincent
– Claudio Ferrero†

● Other synchrotron/labs
– Soleil: Fred Picca
– Clemens Prescher (Dioptas)
– Sesame: Philipp Hans
– NSLS-II, ALS, APS, ...

● LinkSCEEM-2 grant
– Dimitris Karkoulis
– Giannis Ashiotis
– Zubair Nawaz

● ESRF Beamlines:
– BM01, BM02, ID02, ID11, ID13, ID15a, ID15b, ID21, ID22, ID23, BM26, 

ID27, ID28, BM29, ID29, ID30, ID31 ...



23/09/2024PyFAI user meetingPage 41

Questions ?


	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 24
	Slide 25
	Slide 26
	Slide 40
	Slide 41

