Python Fast Azimuthal Integration tool-set

PyFAIl user meeting
NoBugs 2024 satellite meeting

Jérébme Kieffer
Edgar Gutierrez-Fernandez
Maciej Jankowski

Algorithms & scientific Data Analysis

Page 1 PyFAl user mee ting 23/09/2024 The European Synchrotron | ESRF

ot

* Power diffraction and scattering of X-Rays
 What is azimuthal integration of 2D detector data ?
* The need for faster data processing ...

* ... without compromising quality

 PyFAI: latest news

e Conclusions

Page 2 PyFAl user meeting 23/09/2024 The European Synchrotron | ESRF

X-ray scattering experiments

Source: Wikipedia
CC-BY-SA: Jeff Dahl

Bragg spots:
diffraction from
single crystal

X ray
Monochromatic > @ i .
Sample\\\

Ice ring: diffraction
from powder

2D camera
 Light is reflected on crystallites as on mirrors:

- No energy change (elastic scattering)
- Direction of diffracted beam depends on the crystalline cell and its orientation

- Intensity of the diffracted beam depends on the the content of the cell

) .) image plate
— Bragg’s Nobel price in 1915 nA = 2dsinf, Debye-Schermer 96101

cones__amiiiu

* Multiple small crystals (powder)

- Isotropic cones gives ellipses

when intersected by a flat detector Source: Wikipedi ’

Klaus-Dieter Liss

Page 3 PyFAl user meeting 23/09/2024 The European Synchrotron | ES

. Powder diffraction and small angle scattering

Application of powder diffraction: Application of small angle scattering
- Phase identification (mapping) — Micro/nano-scale structure
- Crystallinity - Particle shape
— Lattice parameters — Protein domains
— Thermal expansion - Protein folding
— Phase transition - Colloids
- Crystal structure - Fiber orientation

- Strain and crystallite size

 Both rely on the same transformation: 2D image — azimuthal average

Azimuthal . "

~integration .,

20(9) e
Page 4 PyFAl user meeting 23/09/2024 The European Synchrotron | ESRF

Intensity

Azimuthal angle x 1°)

Fast Azimuthal Integration using Python

A

Fast Azimuthal Intezration

1o

18

NI

0

Scatterng angle 28 (7]

2l

Average Calibrate
1d and 2d 3d geometry <

o 5 13 15 0 25 E1]
Scattering angle 28 {7)

* Why Python ?

- Itis the main programming language used in science and at ESRF: Bliss, PyMca, ...

 Butisn’t Python slow ?

- Maybe ... Python is just a convenient interface, what matters is written in C & compiled

Page 5 PyFAl user meeting 23/09/2024 The European Synchrotron | ESRF

_Howitworks .

e Pixel-wise corrections: I I :
raw ‘dark _ Slgnal

I.,.= =
“" F-Q-P-A-I, normalization

Where: l, is the incoming flux (pixel independent) —

| Pixels falling into the radial bin
|, and | . are the signal measured from the detector % (without pixel splitting)
|

ra

F is the flat-field correction
Q is the solid angle for this pixel

Radial bin

P is the polarization factor

A is the parallax correction factor

 Averaging over a bin defined by the radius r:

. gy Z Ci'Signal,' Imin Mmax
- Need for pixel splitting? (1), =t
r— . li . '
- ¢, being the fraction of the pixel i contributing to bin_ Ezb:n € normatization,
* Associated uncertainty propagation: 3" ¢2-variance,
U(Ir): i€ bin, ‘ ‘
- Assuming there is no correlation between pixels 2. c;-normalization;

i€bin,

- Pixel splitting can create correlation between bins...

Z c,»z-variancei
O'(<I>r): i€bin, . .
Math from Kieffer et al.; J. Synch. Radiation (2020) Z ¢;-normalization;
https://doi.org/10.1107/S1600577520000776 tebin,

Page 6 PyFAl user meeting 23/09/2024 The European Synchrotron | ESRF

https://doi.org/10.1107/S1600577520000776

. Many different tools exist ...

Name License Institute Language Last
release

PyFAl MIT ESRF Python 2024
FIT2D MIT ESRF Fortran 2016
XRDUA GPL U. Antwerp IDL 2021
Dawn EPL Diamond Java 2024
DataSqueeze $$% U. Pens. Java 2023
Foxtrot Free Soleil Java 2023
Maud Free U. Trento Java 2023
GSAS-II Free APS Python 2023
Scikit-beam BSD BNL Python 2023
Azint MIT MaxIV Python 2023

SaxsDog GPL U.Graz Python 2022

Page 7 PyFAl user meeting 23/09/2024 The European Synchrotron | ESRF

Concepts in PyFAI

* Image

2D array of pixels as numpy array

read using silx, fabio, hbpy, ... --
 Azimuthal integrator: core object m-
 powder diagram using integrate1d u-

- “cake” image, azimuthally regrouped using integrate2d

* Detector Fﬁj, T

« Calculates the pixel position (center and corners))

e Calculates and stores the mask of invalid pixels.

—> saved as a HDF5 file S

50

 Geometry

150

Position of the detector from the sample & incoming beam™ —

— saved as PONI-file |

350
0 50 100 150 200 250 300 350

http://www.silx.org/doc/pyFAl/dev/geometry.html#detector-position

Page 8 PyFAl user meeting 23/09/2024 The European Synchrotron | ESRF

http://www.silx.org/doc/pyFAI/dev/geometry.html#detector-position

. Geometry in pyFAl

Parameters:
* 3 distances in meters: dist, poni., poni, _
* 3 rotations in radians: rot,, rot,, rot, PONI-file

+ wavelength || energy

From the sample's point of view,
looking towards the detector :

i\ s roti: moves detector — to the right
0 s b T : rot.: moves detector | downwards
gl) i rots: moves detector ¥ clockwise

QOU

rota/

//5(2

Detector's origin: /”Com,-
lower left, looking from sample XR; {
the sample s

p PyFAl user meeting 23/09/2024 The European Synchrotron | ESRF

Page 9

Calibration in pyFAI

 Geometry is best determined from the analysis of a known reference sample

* This calibration step is preferred to measuring distances and beam center
position
- The prerequisite is:
* detector geometry and mask,
« calibrant (LaBs, CeO;, AgBh, ...)
 wavelength or energy used
- Only the position of the detector and the rotation needs to be refined:

« 3 translations: dist, ponii and poni:

* 3 rotations: rot,, rot,, ret;

* Itis divided into 4 major steps:

1) Extraction of groups of peaks
2) ldentification of peaks and groups of peaks belonging to same ring
)

3) Least-squares refinement of the geometry parameters on peak position

4) Validation by a human being of the geometry
 PyFAIl assumes this setup does not change during the experiment

%
Page 10 PyFAl user meeting 23/09/2024 The European Synchrotron | ESR?

What happens during an integration

1) Get the pixel coordinates from the detector, in meter.
There are 3 coordinates per pixel corner, and usually 4 corners per pixel.
1Mpix image — 48 Mbyte !
2) Offset the detector's origin to the PONI and rotate around the sample
3) Calculate the radial (20) and azimuthal () positions of each corner
4) Assign each pixel to one or multiple bins.
If a look-up table is used, just store the fraction of the pixel.
Then for each bin sum the content of all contributing pixels.
5) Histogram bin position with associated intensities
6) Histogram bin position with associated normalizations (i.e. solid angle)

7) Return bin position and the ratio of sum of intensities / sum of norm.

Page 11 PyFAl user meeting 23/09/2024 The European Synchrotron | ESR?

Example of simplified implementation in Python

Common initialization step:

In [1]: import numpy
npt = 1024
y,x = numpy.ogrid[-512:512,-512:512]
radius = (x*x+y*y)**0.5

= radius.max()+0.1

data = numpy.random. random((1024, 1024))

Naive approach integration using corona extraction with masks:

In [2]: %%time
res_loop = numpy.zeros(npt)
for i in range(npt):
rinf = rmax * i / npt
rsup = rinf + rmax / npt
mask = numpy.logical and((rinf <= radius), (radius < rsup))
res loop[i] = data[mask].mean()

CPU times: user 1.04 s, sys: 0 ns, total: 1.04 s
Wall time: 1.04 s

Vectorized version using histograms:

In [3]: %% time
count_of pixels = numpy.histogram(radius, npt, range=[0, rmax])[0]
sum_of_intensities = numpy.histogram(radius, npt, weights=data, range=[0, rmax])[0]
res_vec = sum_of_intensities / count_of pixels

CPU times: user 19.5 ms, sys: 1.44 ms, total: 20.9 ms
Wall time: 19.4 ms
In [4]: # Speed-up: 50x, validation:
numpy .allclose(res_loop, res_vec)

Out[4]: True

Page 12 PyFAl user meeting 23/09/2024 The European Synchrotron | ES

=

. But speed does matters ...

1026

18
« New EBS source 0 S RTT

. 16 =
- 50x brighter = ﬂ ﬂ ﬂ l ﬂ ﬂ ﬂ ﬂ
1014 -)Elecirons

Undulatol ESR.F, SPring-S ..1020
A ARA AJ APS,
11‘11

3rd Generation SR

)
[
[—)

[
&

L}
[
(=]

(5]
(]

- User mode since 2020

[

(—)
r=
I
1

“ fiom

[

[—)
-
(=]
1

Roadrunner

>

Computer Speed (Mflop/s)

\Blue Gene [~1(016
NEC Earth

Intel ASCI-Red =10 14
\.Cray 90

-y

(=]
)
1

NSLS

nd 2
274 Generation SR SSRL

[—

(=
=
1

1** Generation SR

[u—y
=}
-
1
L)
[y
>
=
N

N\ Cray 2
N\ Cray X-MP

Cray 1

A

SIPEIIP 9 UI IPMIUSLUI JO S.IIPIO (T

102 = CDC 6600 1010

IBM 7090

(;peamy mu/mqo, 1o/s/uojoyd) duerLiq Aer-xX

100 - -108

12 orders of magnitude in 6 decades

<

Cu Ka Rotating Anode

100 Y
] | L 1 L} 1
1950 1960 1970 1980 1990 2000 2010 2020

Year Source: UCLA Coherent Imaging

102

 Faster detectors

- Eiger2 detector (2-20 kHz) — Stream limited to 2 GB/s/detector !
- Jungfrau detector (2 kHz)

Page 13 PyFAl user meeting 23/09/2024 The European Synchrotron | ESRF

The gap between computing and acquisition grows

* Most other codes use the same algorithm based on histograms ...
... and reach the same speed:

- Fit2D written in Fortran
- SPD written in C

- Foxtrot written in Java
* The algorithm needs to be changed !

- Histograms cannot easily/efficiently be parallelized !

- Re-develop based on parallel algorithms
— CSR sparse matrix dot product is many-core friendly
Described in https://arxiv.org/abs/1412.6367v1 (2014)

— Several projects copied this idea:

« Saxsdog https://arxiv.org/abs/2007.02022 (2020),
« MatFRAIA https://doi.org/10.1107/S1600577522008232 (2022)

Page 14 PyFAI user meeting 23/09/2024 The European Synchrotron | ESR?

https://arxiv.org/abs/1412.6367v1
https://arxiv.org/abs/2007.02022
https://doi.org/10.1107/S1600577522008232

. Look-up table integration using only Python

Using a Sparse matrix multiplication

Those multiplication can take advantage of parallel hardware unlike histogram which require costly afamic operations. This trick is called "scatter to gather"
transformation in parallel programming.

In [5]: %% time
from scipy.sparse import csc_matrix
positions = numpy.histogram(radius, npt, range=[0,rmax])[1]
row = numpy.digitize(radius.ravel(), positions) - 1
size = row.size

col = numpy.arange(size)
dat = numpy.ones(size, dtype=float)
csr = csc_matrix((dat, (row, col)), shape = (npt, data.size))

print(csr.shape)

(1024, 1048576)
CPU times: user 60.5 ms, sys: 6.21 ms, total: 66.7 ms

wall time: 69.7 ms

In [6]: %%time
count_csr = csr.dot(numpy.ones(data.size))
sum_csr = csr.dot(data.ravel())
res c¢sr = sum_csr / count csr

CPU times: user 3.11 ms, sys: 3.1 ms, total: 6.21 ms
Wall time: 4.69 ms

In [7]: # Speed-up: 5x vs histograms, validation:
numpy.allclose(res csr, res vec)

Oout[7]1: True

Sources of this demo available on:
https://gist.github.com/kif/ab37c61351d8238f90245b0afb56192e

Page 15 PyFAl user meeting 23/09/2024 The European Synchrotron |

https://gist.github.com/kif/ab37c61351d8238f90245b0afb56192e

Advantages of histograms vs matrix multiplication

Histograms

Pro °* Easierto understand
* Low memory consumption

 Fast initialization

Sparse matrix multiplication

Faster, even on a single core
Many-core friendly

- OpenMP and OpenCL

Con °* Pretty slow

* Hardly parallelizable

Slower initialization

The sparse matrix can be large

Rule of thumb: < 5 frames

Page 16 PyFAI user meeting

> 5 frames

23/09/2024 The European Synchrotron | ESRF

. Benchmark: Let's speak about speed !

Intel(R) Xeon(R) CPU E5-1650 v4 @ 3.60GHz / GeForce GTX TITAN

—l— integrateld legacy CPU serial
integrateld ng CPU_serial
—— integrateld legacy CPU_CSR_OpenMP
—8— integrateld ng CPU_CSR OpenMP
5004 s —M - integrateld legacy GPU _CSR _NVIDIA GeForce GTX TITAN

1000 ~

‘:§\ -®- integrateld_ng_GPU_CSR_NVIDIA_GeForce_GTX_TITAN

’a S
G 200 -
(@]
o
=~ 100 A
©
c
O
() 50 T
(2]
©
o
v 20
£
o
10

5 .

2 -

2 4 6 8 10 12 14 16
Image size in mega-pixels

6-year-old workstation: CPU from 2016, GPU from 2013

Page 17 PyFAl user meeting 23/09/2024 The European Synchrotron |

|vorésfot

High frequency noise issue

Where pixel splitting comes back

Page 18 PyFAl user meeting 23/09/2024 The European Synchrotron | ESRF

Azimuthal

. Example with SAXS data integrated in 2D

50 50
©
e=)
0 =
E ¢
= B
—50 4 -50
—100 4= -100
-150

Pilatus 200Kk:
~500 x 400 pixels

2D averag@—bir 512x360 bins

| e "
Without pixel splitting <> ~ With pixel splitting

150 { 150

100 4 100

-150

05 10 15 2.0 05 10 15 2.0
Radial

creates bin cross-correlation

Page 19 PyFAl user meeting 23/09/2024 The European Synchrotron | ESRF

. Pixel splitting schemes available in pyFAl

No pixel splitting: default histograms N

— Each pixel contributes to a single bin of the result \

— No bin correlation but noisy \

— The pixel has no surface: sharpest peaks

Bounding-box pixel splitting \

- The smoothest integrated curve \

— Blurs a bit the signal

Pseudo pixel splitting (deprecated) N

- Scale down the bounding box to the pixel area,
before splitting. \

— (Good cost/precision compromise, similar to FIT2D

Full pixel splitting N

- Split each pixel as a polygon on the output bins. N\

— Costly high-precision choice \

Page 20 PyFAl user meeting 23/09/2024 The European Synchrotron | ESR?

. Impact of pixel splitting on integration speed

* Histogram based algorithms:

— Each pixel is split over the bins it covers.
— The corner coordinates have to be calculated (4x slower initialization)

- The slow down is function of the oversampling factor, for every image

* Sparse matrix multiplication based algorithms

- The sparse matrix contains already the pixel splitting scheme
— Longer initialization time related to the oversampling factor

- There are NO performance penalty on the integration itself

All those consideration are independent of the programming language

Nevertheless, Python which is interpreted is expected to be 1000x slower than:
* compiled code like C, C++, Fortran, ...
* JIT compiled code like Java, Julia or numba

Page 21 PyFAIl user meeting 23/09/2024 The European Synchrotron | ES

Latest news from pyFAI (2022)

Page 24

High speed sigma-clipping

Enforce normal distribution in every azimuthal bin :
* Remove single crystal contribution from powder diffraction
 Several error models: poissonian, azimuthal, hybrid

Enables:

« Single crystal frame compression (2x-20x, lossy compression)
* Peak-finding: 250 Hz / GPU

Sponsored by serial crystallography (ESRF 1D29, MX)
* Kieffer & al. (2024) J.Appl.Cryst accepted

Square out all integration engines:

Any type of integration: 1d (averaging) and 2d (caking)

Any type of pixel-splitting: without, bounding-box or full splitting

Any type of algorithm: histogram or sparse matrix multiplication

Any type of implementation: Python, Cython (C++) and OpenCL (GPU)

legelit
S

PyFAl user meeting 23/09/2024 The European Synchrotron | SRF

Latest news from pyFAI (2023)

* Orientation management

(D] Pilatus1M.edf, calibration: current | Dioptas 0.6.1 - © 2024 C. Prescher

- Allows to flip the detector V/H
— Compatibility with Dioptas
- New orientation tag:

 PyFAl's default is 3
e Dioptas’s default is 2

 Grazing incidence representation g// & q-:

- Thanks to Edgar

2D regrouping

Scattering vector gggp (nm~1)

=20 -10 0 10 20
Page 25 PyFAI user meeting Scattering vector q;p (nm~1)

arotron | ESRF

Latest news from pyFAI (2024)

* Ewoks integration
- Lot of improvement in the "worker’

Tutorial tomorrow morning by Wout & Loic

 Mapping
- Visualization tool thanks to Loic & Edgar

PyFAl-diffmap viewer

test 20240916
% &7 B X &7 =

Frame #0

70
60
50
o)
3 40
2
3
£ 30
20 4
10 A \J.,_\%_;
[} y U T T T
20 25 30 35 40

k T T T T T T T T
o] 250 500 750 1000 1250 1500 1750 2000
X

222222 ;

° ol bounds Min 18.5562 | Max SR
" The European Synchrotron | ESRF

Page 26

. Acknowledgments

* Algorithm & Data Analysis group

« Data analysis unit colleagues:

Edgar Gutierrez-Fernandez
Maciej Jankowski
V. Armando Sole

Vincent Favre-Nicolin

Valentin Valls
Loic Huder
Thomas Vincent

Claudio Ferrerot

e ESRF Beamlines:

BMO1, BM02, ID02, ID11, ID13, ID15a, ID15b, 1D21, 1D22, ID23, BM26,
D27, 1D28, BM29, ID29, ID30, ID31 ...

Page 40

PyFAI user meeting

e Other synchrotron/labs

- Soleil: Fred Picca

— Clemens Prescher (Dioptas)
- Sesame: Philipp Hans

- NSLS-II, ALS, APS, ...

* LinkSCEEM-2 grant

- Dimitris Karkoulis
- Giannis Ashiotis

- Zubair Nawaz

23/09/2024 The European Synchrotron | ESR?

Questions ?

PyFAl user meeting 23/09/2024 The European Synchrotron | E

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 24
	Slide 25
	Slide 26
	Slide 40
	Slide 41

