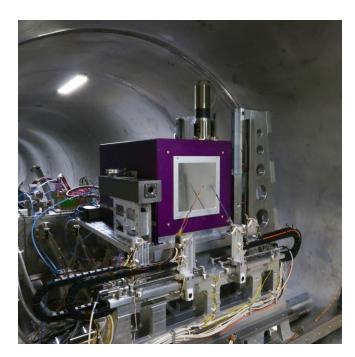
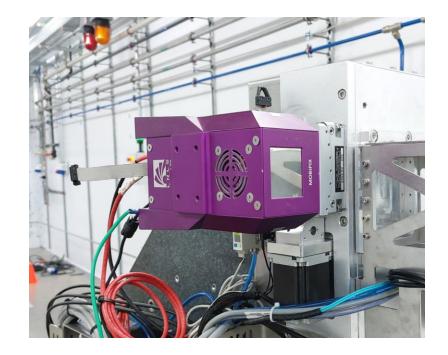
2D Detectors at SIRIUS

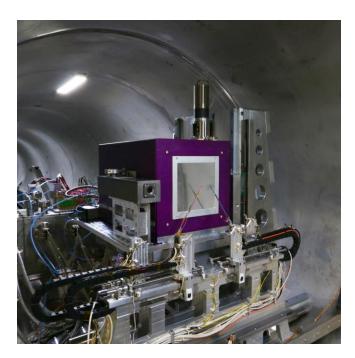
LImA Satellite Meeting @ NOBUGS 2024 Fast 2D detector DAQ at different facilities

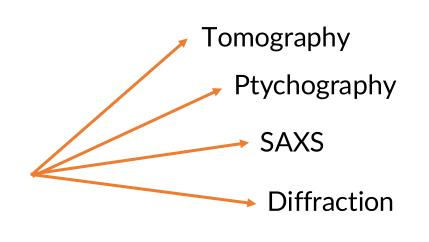




Current state

- Two main detectors, using Medipix3RX: PIMEGA and Mobipix
- Software stack: EPICS AreaDetector and custom DAQ





Current state

- Two main detectors, using Medipix3RX: PIMEGA and Mobipix
- Software stack: EPICS AreaDetector and custom DAQ

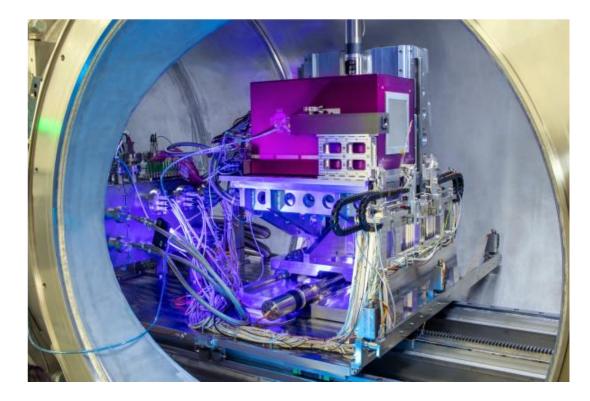
PIMEGA family

	Name	Pixel arrangement	Area	Frame rate	Data rate
	πM3GA 540D (4x 135D modules)	3106 x 3096 (9.6 MPixels)	170 x 170 [mm²]	2000 fps @12 bits	Raw: 230.8 Gbits Decoded: 307.7 Gbits
IT MBGA 135D	πM∃GA 135D	1553 x 1548 (2.4 MPixels)	85 x 85 [mm²]	2000 fps @12 bits	Raw: 57.7 Gbits Decoded: 76.9 Gbits
	πM∃GA 450D	31060 x 256 (7.9 MPixels)	1710 x 14 [mm ²]	1000 fps @12 bits	Raw: 190.8 Gbits Decoded: 254.4 Gbits

Mobipix

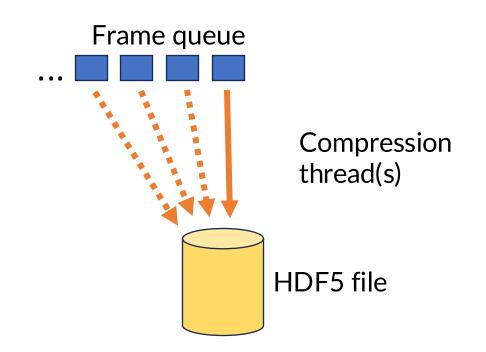
Name	Pixel arrangement	Area	Frame rate	Data rate
Mobipix 15D	512 x 512 (0.26 MPixels)	28 x 28 [mm ²]	2000 fps* @12 bits (expected)	Raw: 6.3 Gbits Decoded: 8.4Gbits

Mobipix


Name	Pixel arrangement	Area	Frame rate	Data rate
Mobipix 15D	512 x 512 (0.26 MPixels)	28 x 28 [mm ²]	2000 fps* @12 bits (expected)	Raw: 6.3 Gbits Decoded: 8.4Gbits
			200 fps @12 bits (achieved)	Raw: 0.6 Gbits Decoded: 0.8 Gbits

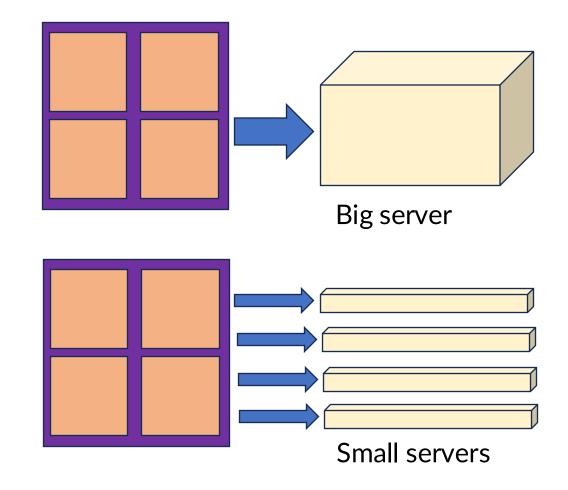
PIMEGA

- Dedicated server for DAQ
- RDMA (RoCE v1) over **100Gbps fiber** (4x for 540D)
- Uses custom DAQ software: Pimega Software Suite
- Saves into Lustre filesystem



PIMEGA – saving bandwidth

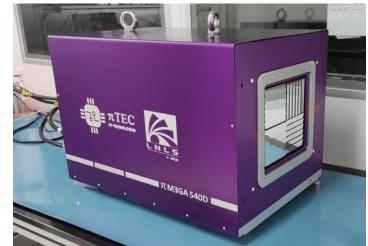
- Saving is limited to ~100fps. High dead time!
 - \circ Not necessarily a hardware limitation
 - Data flow is not fully parallelized, doesn't take advantage of multiple threads
 - Compression happens frame by frame, gzip only
 - Adding more threads (· · · · · ▶) would require a complete refactoring

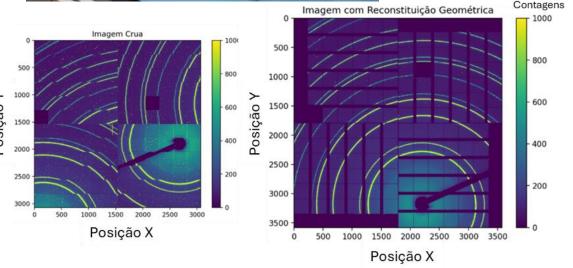


PIMEGA – monolithic application

- The 540D detector is essentially made up of 4 135D detectors

 Requires a powerful server with a lot of IO that can handle the whole load
- Could we have a distributed architecture with 4 servers capable of handling one 135D each?



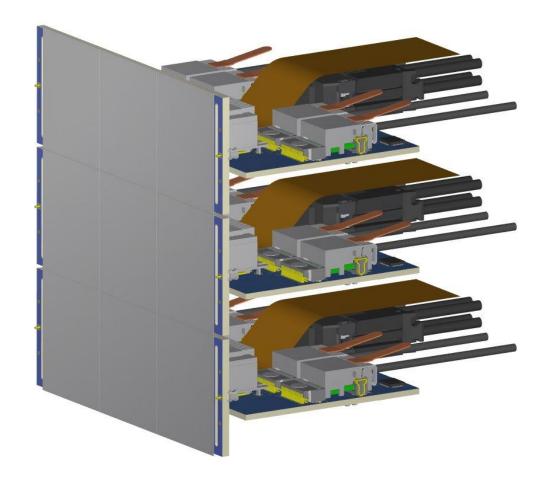


PIMEGA – geometric restoration

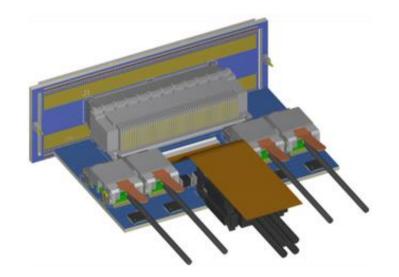
- The ASICs can be laid out in **complex geometries**.
 - \odot We need to recover the image on the detector's face
 - Do it for saved data or only visualization?
 - o GPU acceleration for restoration?
 - Use up **bandwidth and storage space** to save raw frames and restored frames, since the process is lossy?
 - Integrate with existing HPC to launch restoration jobs?

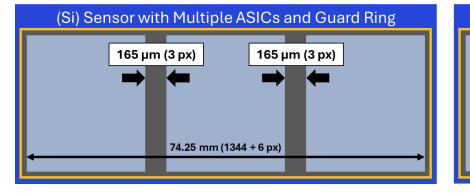
MINISTRY OF SCIENCE TECHNOLOGY AND INNOVATION

Mobipix 15D

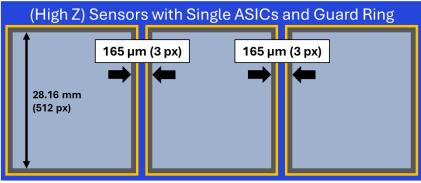

- Embedded CPU inside detector: Jetson Nano TX1 (discontinued)
- 2 CSI interfaces
- Uses AreaDetector IOC reading frames from Video4Linux
- Saves into NFS filesystem (very slow) or local SSD
- Highest lossless rate achieved: 200 fps

Future challenges – TUPI (TPX4)



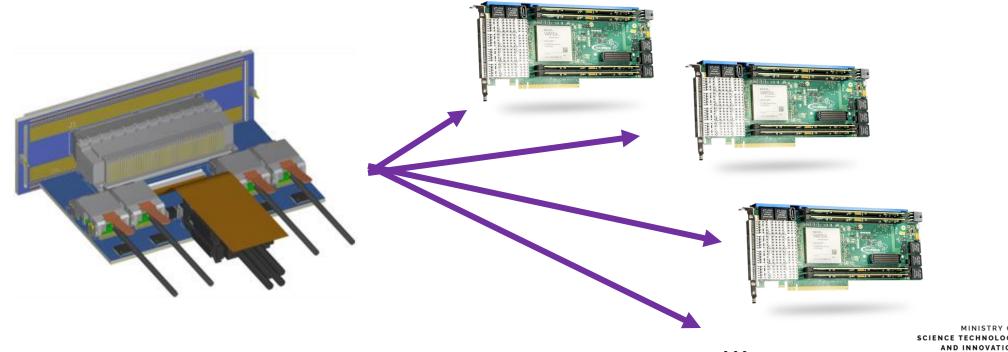

TUPI module

Timepix4 ASIC (frame-based mode)


 512 x 448 pixels
 6.94 cm2
 Up to 44000 fps
 Max data rate: 160 Gbps (16x 10Gbps)

• Each module will have **3 ASICs**!

Timepix4 ASIC (pixels area) Sensor Guard Ring Sensors Board (PCB)


MINISTRY OF SCIENCE TECHNOLOGY AND INNOVATION

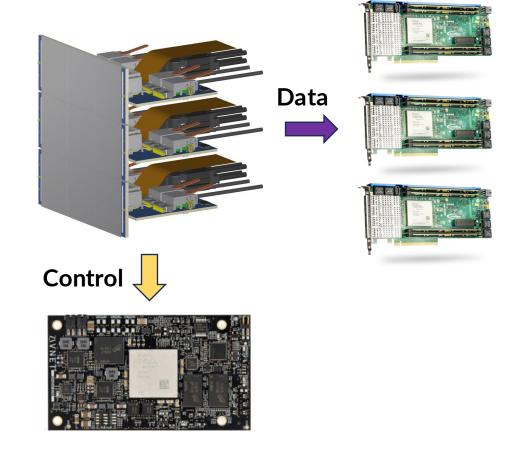
Distributed architecture

- Each ASIC has **16 high-speed transceivers** (8 for each half), which will be connected directly to the DAQ board
- This naturally enables a *partial frame dispatch* system

MINISTRY O

AND INNOVATIO

Data-driven mode


- The TPX4 ASIC supports a data-driven mode, where each photon hit generates an event packet with position, Time-of-Arrival and **Time-over-Threshold** information
- There is interest in supporting this mode for multi-energy acquisitions
- Can we **reuse** the DAQ software? How?
 - Use frames as simple memory buffers and store event data in them to be decoded later?

Split control

- The DAQ boards will be connected to some amount of servers running the DAQ software, and they need to be **configured for each acquisition**
- The ASICs will be a connected to a **control board**, whose functionality will be exposed over Ethernet
- How to guarantee consistent acquisition state between these devices?

DAQ software choices

LImA2	AreaDetector	Odin
 Partial-frame dispatch needs to be implemented Control needs to be integrated to AreaDetector/EPICS 	 In-house experience Distributed archictecture needs to be implemented from scratch. Is it enough to create a super-process which controls everything else? 	 Partial-frame dispatch needs to be implemented we haven't looked into Odin as much yet

- We will **keep using AreaDetector** for other devices: GenICam cameras, integration with Pilatus, Vortex detectors. Automatic integration with the control system, aren't as high performance.
- However, for our high performance detector family (i.e. TUPI), we would like to **converge on a single software platform**.
- None of these existing solutions use Parallel HDF5. We would like to investigate its usage, either for decreasing the amount of files (no Virtual Datasets) or for performance.

Thank you

Érico Nogueira Rolim erico.rolim@lnls.br

Sign up to receive newsletters about CNPEM and its units

cnpem.br

CNPEM Brazilian Center for Research in Energy and Materials MINISTRY OF SCIENCE TECHNOLOGY AND INNOVATION

