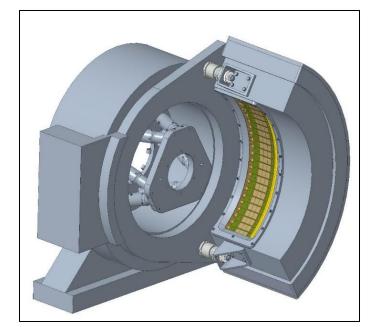
Detector DAQ at DLS

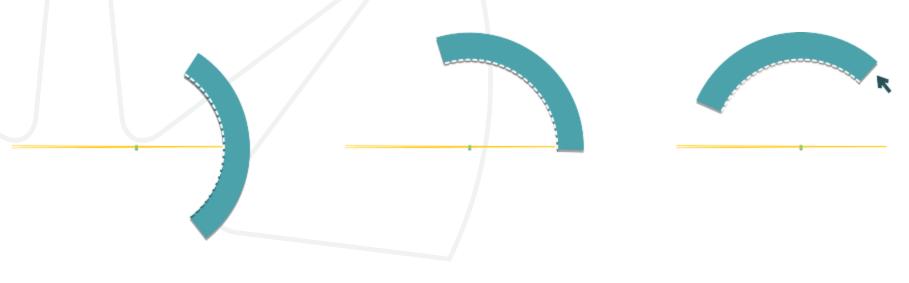
Gary Yendell – Beamline Controls Core Team

27/09/2024

Detectors at DLS

- AreaDetector widely used where support exists
 - Pilatus (<4)
 Andor
 PCO
 Aravis
 - \circ Phantom
- Higher data rate detectors (>~10Gbit/s) use Odin


 Arc XPDF
 Eiger (Dectris)
 Excalibur
 Merlin*
 Tristan
 - $\circ \text{Xspress}^*$


*Original AreaDetector still used where high data rates not needed

DLS Detector Group - Arc (XPDF)

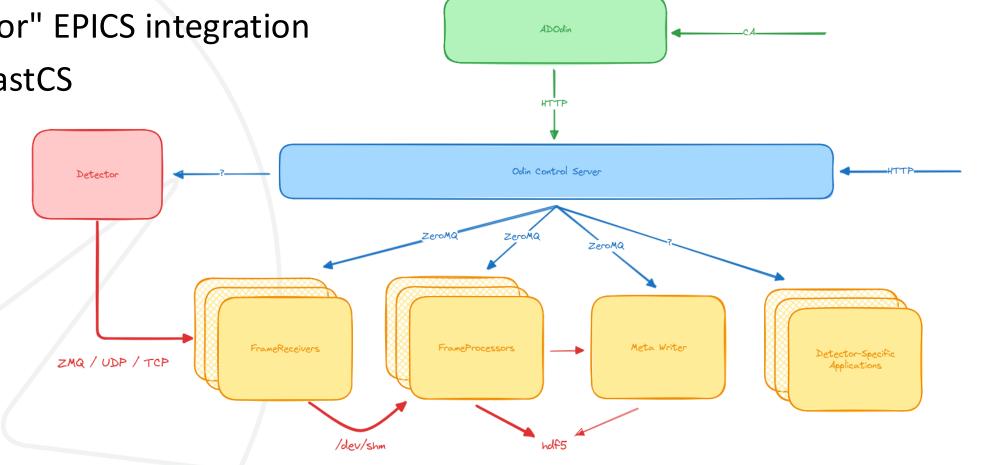
- CdTe MediPix3 photon counting detector
- High resolution(s) | Qmax 35: (55 μm pixel size)
- Fast | Continuous collection $@ \ge 125 \text{ Hz}$
- Efficient | >85% @ 76.6 keV (1mm sensor)

DLS Detector Group - Tristan

- 160 Timepix3 chips from CERN Medipix3 collaboration
- Pixel size 55µm x 55µm
- 10,485,760 pixels 23cm x 16cm
- 400Gbps Ethernet Readout
- 10M & 1M versions (so far)
- No Readout Dead Time Continuous operation
- Data-driven Zero-suppressed Sparse readout
- Nexus / HDF5 dataset

DLS Detector Group - Xspress IV

- Enhancement of Xspress3 detector readout system
- New spectroscopy DPP reduces detrimental effects of XTalk between pixels in monolithic detectors
- Significantly improves throughput and / or spectral quality of XAS scans (especially at high E) with existing workhorse HPGe detectors
- Switchable MCA or raw event mode to increase throughput



STFC – DLS Collaboration

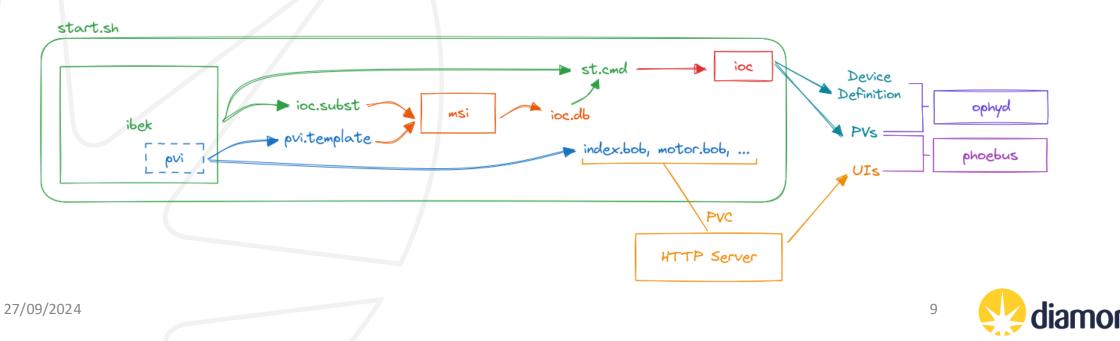
Current Odin Architecture

- C++ Data Readout
- Python Control
- "AreaDetector" EPICS integration
- ADOdin -> FastCS

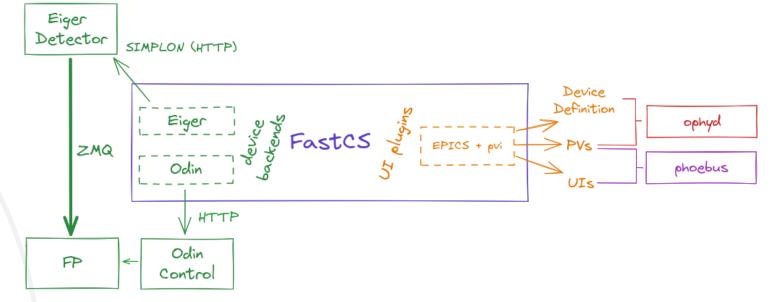
Diamond-II Software Upgrade

- IOC Frameworks
- Detector Readout

Diamon-II Software Upgrade - IOC Frameworks


- Make it easier to build and use IOCs
- Provide a high-level python interface for creating device drivers, compatible with modern tooling and deployment under Kubernetes
- Provide runtime introspection of IOCs for ophyd devices
- Generate standardised device-level UIs across C and Python IOCs

PVI – PV Interface


- A python library to provide an interface to the PVs in an IOC in the form of

 A generated UI
 An EPICS NTTable served over PVAccess
- Used in FastCS during IOC boot
- Used by ibek in epics-containers to generate UI and info tags in database before running IOC

FastCS – Fast Control System

- A python framework to create generic device support with a pluggable control system interface
- Implement a python library for a device with FastCS classes and load into a control system frontend, e.g. EPICS, Tango

- Uses PVI to generate Engineering UI of all parameters automatically
- Shared across teams in Beamline/Accelerator controls
- Simpler developer experience, gentler EPICS learning curve, modern standards and tooling

IOC Frameworks – Planned / Current Projects

• Eiger / Odin

 \odot Driver introspects APIs for available parameters

o Removes need to maintain static definitions, e.g. EPICS database templates

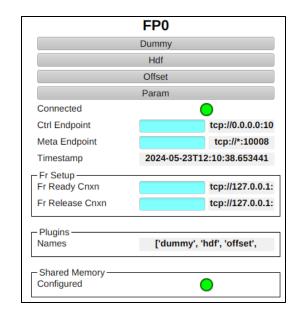
 \circ New parameters exposed as PVs on IOC reboot

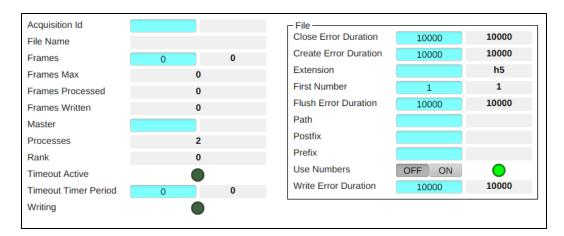
PandA

Optional logic blocks in hardware introspected during IOC boot
 Replace current custom pythonSoftIOC with a shared framework
 Potential to extend collaboration with Tango-based facilities

• TwinCat

 \odot Introspection of EtherCAT I/O chain


• Alternative to StreamDevice with logic in python instead of EPICS database



FastCS Eiger & Odin Generated Phoebus Uls

- Detector Config					
Auto Summation	OFF ON	0	Omega Start	0.00	0.00
Beam Center X	0.00	0.00	Phi Increment	0.00	0.00
Beam Center Y	0.00	0.00	Phi Start	0.00	0.00
Bit Depth Image	1	6	Photon Energy	6930.32	6930.32
Bit Depth Readout	1	6	Pixel Mask Applied	OFF ON	
Chi Increment	0.00	0.00	Roi Mode	disabled	disabled
Chi Start	0.00	0.00	Sample Name		
Compression	bslz4	bslz4	Sensor Material	Silicon	
Count Time	0.10	0.10	Sensor Thickness	0.0	01
Counting Mode	normal	normal	Software Version	0.1	L.O
Countrate Correction	OFF ON	0	Source Name		
Countrate Correction	10	000	Threshold 1 Energy	6729.00	6729.00
Data Collection Date	2021-30-09T16	30:00.000-01:00	Threshold 1 Mode	enabled	enabled
Description	Simulated I	Eiger X 16M	Threshold 1 Number Of	C)
Detector Distance	2.00	2.00	Threshold 2 Energy	18841.00	18841.00
Detector Number	EIGER	SIM001	Threshold 2 Mode	enabled	enabled
Detector Readout Time	0.	01	Threshold 2 Number Of	0	
Eiger Fw Version	1.	8.0	Threshold Difference	1	
Element	Co	Со	Threshold Difference	enabled	enabled
Extg Mode	double	double	Threshold Difference	2	2
Fast Arm	OFF ON		Threshold Energy	4020.50	4020.50
Flatfield Correction	OFF ON	0	Total Flux	0.00	0.00
Frame Count Time	0.	01	Trigger Mode	exts	exts
Frame Time	0.12	0.12	Trigger Start Delay	0.00	0.00
Incident Energy	13458.00	13458.00	Two Theta Increment	0.00	0.00
Incident Particle Type	pho	tons	Two Theta Start	0.00	0.00
Instrument Name			Virtual Pixel Correction	OFF ON	0
Kappa Increment	0.00	0.00	Wavelength	1.00	1.00
Kappa Start	0.00	0.00	X Pixel Size	0.0	01
Mask To Zero	OFF ON		X Pixels In Detector	4148	
Nexpi	1	1	Y Pixel Size	0.01	
Nimages	1	1	Y Pixels In Detector	4362	
Ntrigger	1	1			
Ntriggers Skipped	0	0			
Number Of Excluded		0			
Omega Increment	0.00	0.00			

Odin				
	FP0			
FP1				
Api	0.10			
ount	2			
Iodule	OdinDataAdapter			
Jpdate Interval	0.20			
ndpoints				
p Address	127.0.0.1			
Port	10004			
o Address	127.0.0.1			
Port	10014			

Containerised Applications

- Moving towards containerising all IOCs and deploying to beamline K8S clusters via kubectl / ArgoCD
- epics-containers / ibek
 - Define containers built from upstream GitHub repos
 - Configure deployments in yaml
 - Wrappers around kubectl and argo cli for convenience
- Odin applications to be containerised in the same way for a consistent deployment process

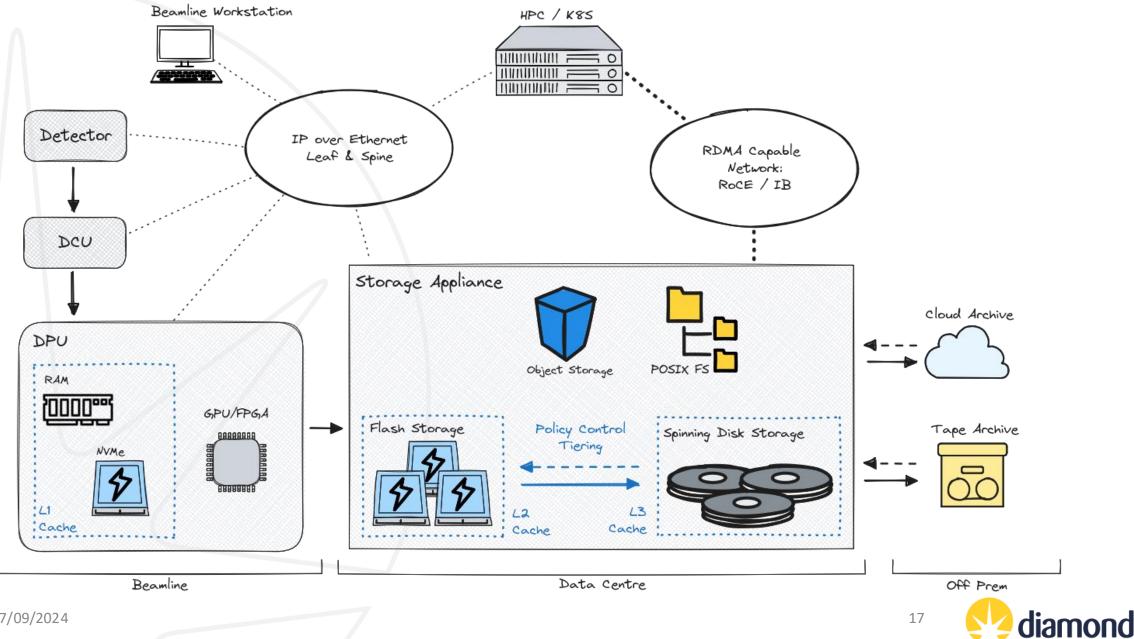
Overview

- IOC Frameworks
- Detector Readout

Detector Readout – Requirements

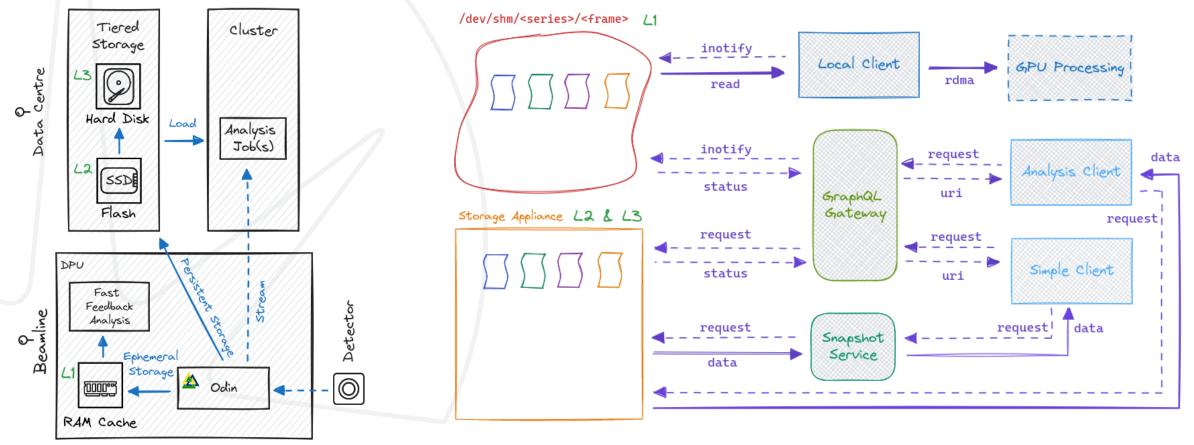
- Support data readout for 100Gb detectors
 - $\,\circ\,$ Add support for writing data to the new storage architecture
 - Provide user configurable data reduction before data reaches persistent storage circular buffering, frame/acquisition veto, ROI, downscaling, compression
 - Provide raw data in an ephemeral format when only the processed data is useful
- Enable analysis processes to access data at higher rates / with lower latency

 Add more supported formats to detector readout framework /dev/shm cache, S3 buckets, streams
 Provide API to query where data for an acquisition is available
- Improve workflows for developing detector drivers and EPICS integration
 Replace ADOdin with FastCS
 - Apply modern tooling and improve documentation to streamline developer experience


Near Future Detectors

- Have 1M Jungfrau for initial testing. Positive results. 9M arriving in July

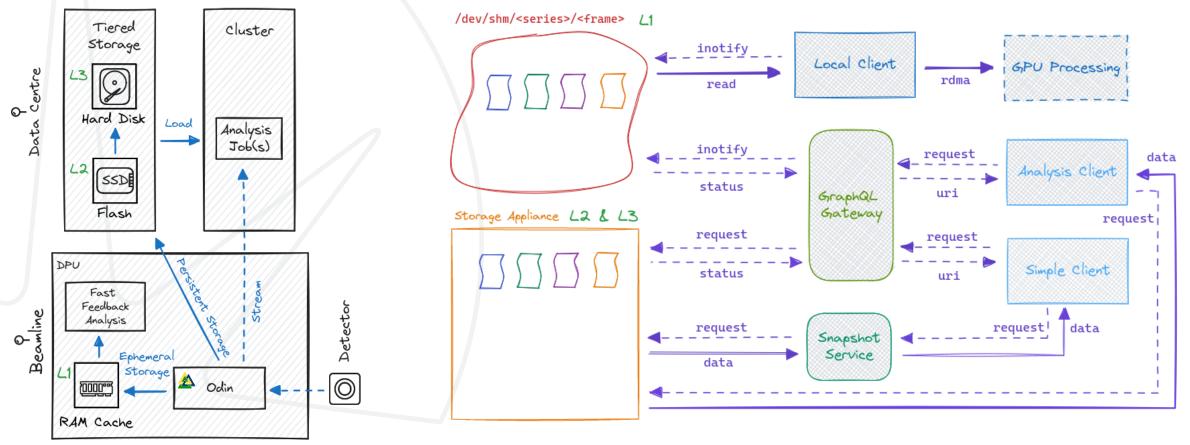
 2.2 kHz / ~300Gbit/s
 - Targeting jungfraujoch readout system for familiar Eiger-like API
- Xspress IV on new SWIFT beamline at 50kHz in event mode
 - Discussions around not writing raw events to HDF5 and streaming directly to cluster analysis processes to write results to file
- New K04 beamline to run Eiger 2XE at ~50% duty cycle
 - \circ Fine tuning experiment orchestration / latency of control system and reliability of readout throughput
 - \odot Storage to cope with ~ 4TB/hr data created
- Pilatus 4 possible, but nothing confirmed


16

New Tiered Storage Architecture

Detector Readout – New Storage Architecture

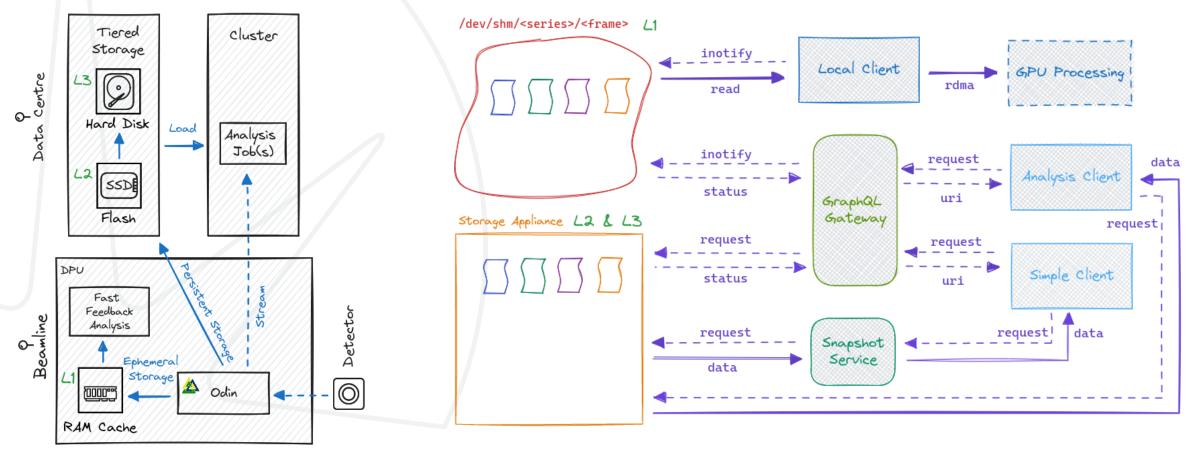
- Detector data written to local /dev/shm cache (L1) and Object Store / Flash Storage (L2,3)
- Low latency processing and fast feedback via L1 cache in GPU/FPGA
- Compute-heavy processing in cluster via L2,3 storage appliance



Detector Readout – New Storage Architecture

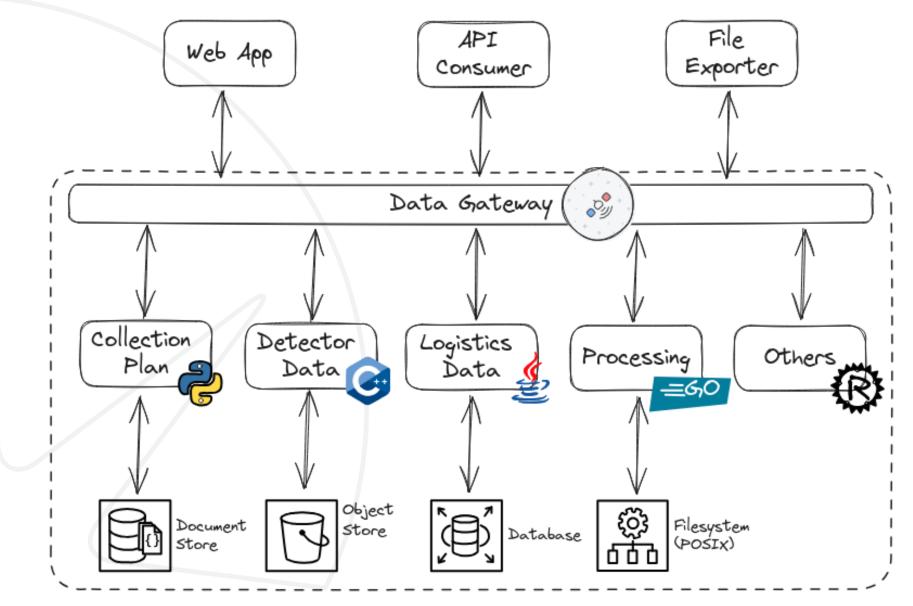
- Analysis clients could also connect directly to a full data stream served from the DPU
 - \circ e.g. ZeroMQ, Kafka, Arrow
 - $\,\circ\,$ Lower latency to cluster

o Useful for small, high-rate data - e.g. event-based detectors - or when only processed data useful



19

Detector Readout – New Storage Architecture


• Eiger /dev/shm local cache implemented on IO3 to support GPU spot finding for fast feedback of alignment scans

20

GraphQL Gateway

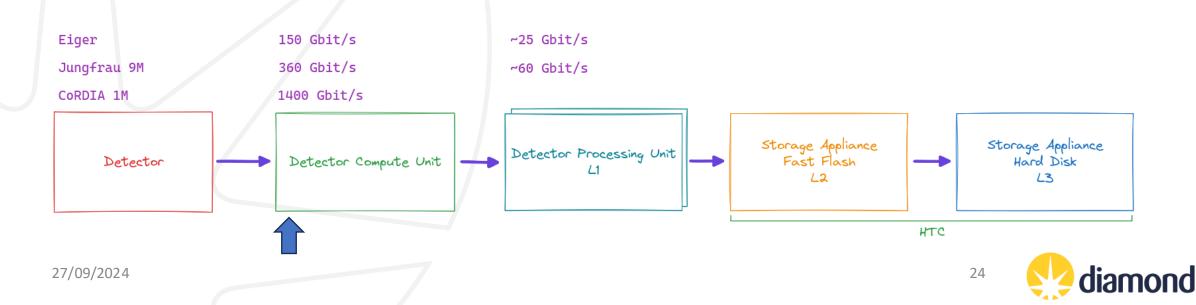
21

27/09/2024

Future

- Dynamix / XIDER / XIDyn
 - ≻100um pixel size
 - ≻Possible 7.5M @ 200kHz
 - >1Tb/s
- Deprecate two-process architecture of FrameReceiver / FrameProcessor with/dev/shm memory buffer to use DPDK plugin in single application

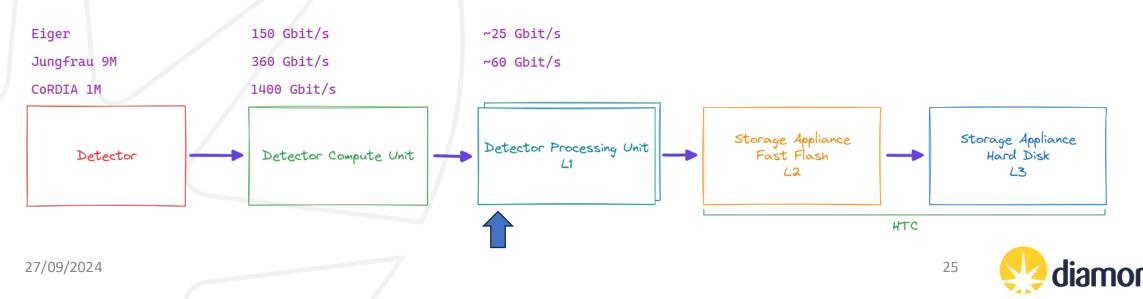
 Bypass OS kernel via poll-mode driver to push packets directly to application layer
 - Reduce multiple copies to get to user space reduce latency and increase throughput
 Saturate 100Gbit rate of network
 - Support for UDP / TCP unsure on ZMQ


People who provided information / slides / diagrams for this talk

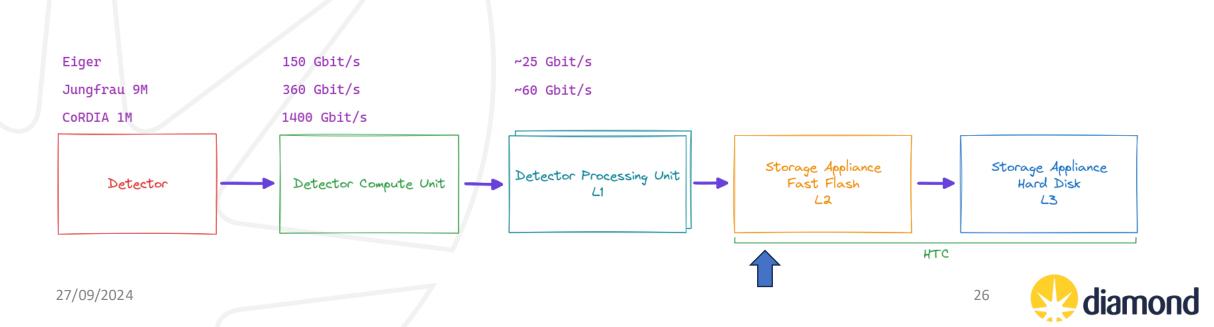
- DLS Detector Group: David Omar, John Matheson
- DLS Analysis Group: Graeme Winter, Garry O'Donnell
- STFC Application Engineering Group: Tim Nicholls

23

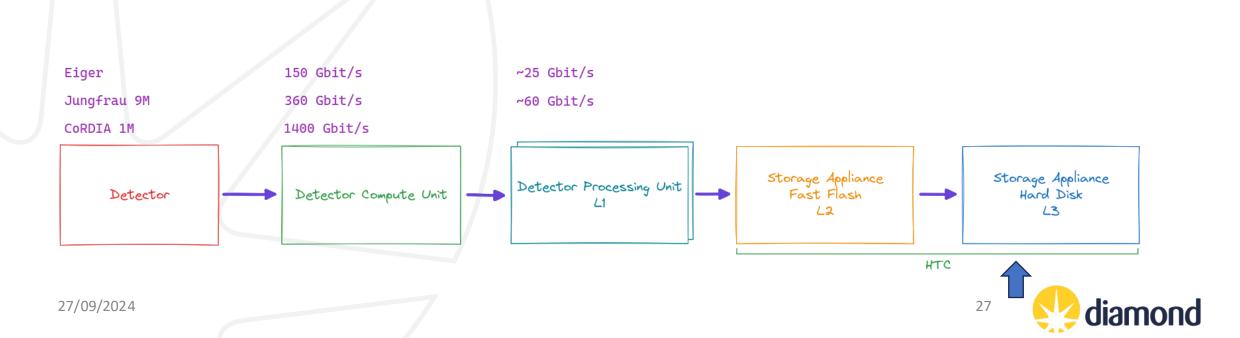
Detector Compute Unit


- FPGA / CPU data stream processing
 - $\,\circ\,$ flatfield / mask / gain correction
 - \circ timeslicing of frames
 - $\circ\,$ event buffering / rate reduction
 - $\circ\ \text{compression}$
 - o other lossless data reduction

Detector Processing Unit


- CPU detector readout and control system integration
 - $\,\circ\,$ option for CPU / GPU / FPGA for
 - experiment control / fast feedback
 - or low latency data analysis
 - \circ data quality reporting
 - \circ circular buffering
 - $_{\odot}$ frame / event level veto

$\,\circ\,$ write to disk and/or serve data over a stream


Storage Appliance – Fast Flash

- CPU / GPU scientific data analysis
 - $\,\circ\,$ likely final processed data for user
 - $\,\circ\,$ a few seconds of latency but during acquisition

Storage Appliance – Hard Disk

- Final state for archival
 - $\,\circ\,$ further / repeated data analysis
 - $\circ\,$ complete disconnect from acquisition

