

GUI Satellite Workshop

NOBUGS 2024 · ILL & ESRF · Grenoble, France

Monday 23rd September

Letizia Sammut

Senior Scientific Computing Software Engineer Australian Synchrotron, ANSTO

The Scientific Computing Team

Scientific Computing since June 2017

Support Science and Users

- Experiment Control
- Data Acquisition
- Data Processing
- Data Analysis

Our Team

- 1 manager
- 17 members
 - 1 principal engineer
 - 10 PhDs
 - 47% gender split

Our Facility

- 18 beamlines
 - 10 original
 - 8 new BRIGHT beamlines
 (3 already operating)

Cross-functional teams

- Experiment Control
- Data Acquisition
- Processing
- GUI

GUI Overview

Engineering GUIs (Controls)

Direct Access to Devices

- 1:1 relationship between GUI element and device
- no additional layers, direct access to EPICS

Fully Tested

- values in fields can be trusted
- under change management

Access Control via OS

run natively on OPIs

Qt (QE Gui)

? 5

Web Interfaces (Sci Comp)

Only needs a browser

- No OPI installs, centrally updated
- Works on many device types
- Remote access enabled

Cyber-security friendly

- Securing websites is well understood
- User login easy to implement

User Experience

- Users are very familiar with websites and their visual language
- Users know how to troubleshoot websites (refresh button, back button, etc.)

Jupyter and Dash

Jupyter Notebooks

- Jupyter notebook employed as a first level playground to talk to Ophyd devices and run Bluesky plans
- Flexible, can support custom experiments
- Can also be useful for initial processing
- Still code based widget functionality possible but limited
- Linear/sequential nature difficult to make dynamic

Dash

- Quick to make web UIs
- No JavaScript required
- Integrates into Jupyter
- Managing more than a handful of state becomes unwieldy

Web UI Technology

Industry Standard Technology

- Frontend
 - ReactJS / NextJS
 - TypeScript
- Backend to the Frontend (BFF)
 - FastAPI (Python)
- Backends
 - Hardware: FastAPI + ophyd/bluesky
 - Non hardware: FastAPI + database

Example: XAS

Example: MEX

Example: MEX

MXCuBE at MX3

MXCuBE Web

- Currently used at MX3
 - Tech stack is perfect match
- Member of Collaboration
 - Contribute to code
 - Integrated Bluesky

Strategies and Challenges

Strategies

- Industry standards and off-the-shelf tools
 - Large eco-system and training material
 - Standard protocols (http), cyber secure

Challenges

- Web frontend very specific tech stack
 - Needs specialised skillset
 - Fast paced upstream development of frameworks
- Web frontend for "industrial control"
 - Real-time data transfer (e.g. array data)
 - UX challenge

Thank you

Any questions?

