



#### **ROCK-IT GUI STATUS: DESY, HZB, HZDR, KIT**

Controls and Acquisition GUI Strategies Satellite Workshop at NOBUGS 2024 | 23 September 2024

Dr. Zeynep Isil Isik Dursun (DESY) | Communications Specialist & Visual Designer @ ROCK-IT





# THE ROCK-IT PROJECT

#### Remote, Operando Controlled, Knowledge-driven, IT-based

Helmholtz-funded project that aims to develop all necessary tools for the automation and remote access of in situ and operando synchrotron experiments.

#### Motivation:

- · Creating a holistic workflow
- · Increasing efficiency of usage, speeding up innovation cycles
- Attracting more industrial users
- · Increasing resilience of facility operation
- Reducing CO<sub>2</sub> footprint of user operation via remote access.

#### Aims:

HELMHOLTZ

- A consistent look & feel between institutes
- · Create a graphical user interface for experiment control & analysis
- Increased standardization of components & interfaces
- FAIR data lifecycle management
- Advance cyber security to safeguard data and infrastructure.









### WORKFLOW FOR MAIL-IN REMOTE-ACCESS OPERANDO EXPERIMENTS



• Catalysis operando experiments - P65 @ PETRA III (DESY), mySpot @ BESSY II (HZB), CATACT @ KARA (KIT)

Science Case:  $CO_2 + 4H_2 \rightarrow CH_4 + 2H_2O$ 

HELMHOLTZ

• Implementation to the new compact Accelerator Mass Spectrometry (AMS) facility - HAMSTER @ HZDR







HZD

### **CURRENT STATUS OF ROCK-IT GUIS**



- All partner institutes have different needs and benefits regarding ROCK-IT.
- Partner institutes are using, implementing and/or developing different user interfaces and control systems, according to their needs.
- Possible solution: Web-based GUI for general users to enter the system, for a consistent look & feel between institutes.









DESY

HELMHOLTZ



HZDR

KIT







# **GUI STATUS AT ROCK-IT PARTNERS: DESY**



#### P65 | Applied X-ray Absorption Spectroscopy Beamline

Contact Person: Udai Singh udai.singh@desy.de (at NOBUGS on September 23-24) | TALK: "Daiquiri, Blissdata, Bluesky, and Sardana" – Today @ 16:00-16:20



#### What technologies are you using and for which types of use cases?

DESY has connected **Bluesky** queueserver to **Blissdata** through **ZMQ\_Stream**. This enables them to use ESRF tools like **FLINT** and **Daiquiri** to display data.

The **Daiquiri** user interface to control **Bluesky** queueserver. Bluesky sends data through **ZMQ\_Stream** to **Blissdata**.

#### What issues are you facing (if any) related to these technologies?

There is more work to be done for the integration of Bluesky with Daiquiri. (More details on Udai Singh's talk "Daiquiri, Blissdata, Bluesky, and Sardana", today @ 16:00).





### **GUI STATUS AT ROCK-IT PARTNERS: HZB**



#### Contact Person: William Smith - william.smith@helmholtz-berlin.de (at NOBUGS between September 23-26)

- Interacting with EPICS devices (Synoptic Screens):
  - MEDM: End of life unsupported software, Easy to produce visually unappealing displays, Extensively used in HZB and at many other labs, very reliable, XML based description of display can be converted to other tools.
  - CS Studio Phoebus: has big user and active developer community, Not just a display manager, also has great tools for archiver and alarms, Java -> cross platform, Possible to publish read only displays on the web, moving to using this in the accelerator and beamlines.
- Running an Experiment:
  - Various bespoke or vendor specific tools
  - Igor, Metrixs, PREVAC, SpecsLab, PEAK etc
  - Labview (expensive, not open source but widely used, has licensing problems)
  - Standardazing where possible on using Bluesky, Graphical user interfaces talk to a server, REST API. They have a PyQT based GUI for interacting with Queueserver. PyQT is easy to develop and interate in. Making use of web technologies. Bluesky enables platform independence and suitable for remote access. They looked at using REACT to make a web front end, as other labs make good progress with this (HZDR, ANSTO). Daiquiri is attractive because we can write it with Python.
- Archived Data: EPICS archiver service to archive the history of PV's, also using Prometheus to archive other parameters. They use the CS Studios Phoebus tools to interact with the history of PV's, Grafana is used to create dashboards from various data sources.
- Interacting with experiment data: Different user groups use different tools; i.e. Igor, PyMca, Silx; Python, matplotlib, Matlab.
- GUI Strategy: Standardize on tools; CS Studios Phoebus → Synoptic Overview; Bluesky with Daiquiri/ some web front end → Running Experiments





### **GUI STATUS AT ROCK-IT PARTNERS: HZB**





**Example Phoebus Beamline Control Panel** 





### **GUI STATUS AT ROCK-IT PARTNERS: HZB**

| n Engine |                  | ICAT not connected.                                                                     |
|----------|------------------|-----------------------------------------------------------------------------------------|
| 2        |                  | Add Plan Viewer Plan Editor                                                             |
|          |                  | ramp • Submit                                                                           |
|          |                  | Name Input                                                                              |
|          |                  | gas_sel 🔹                                                                               |
|          |                  | temp_setpoint 0.00 \$                                                                   |
|          |                  | temp_ramp 0.00 0                                                                        |
|          |                  | interval 10                                                                             |
|          |                  | md                                                                                      |
|          |                  |                                                                                         |
|          | QUEUE            |                                                                                         |
|          | 1 P ramp g       | as_sel: N2, temp_setpoint: 13.0, tem 70_stpoint: 35.0, temp_ramp: 5.0, interval: 1, r   |
|          | 2 P dwell g      | as_sel: Air, dwell: 5, interval: 1, md: · 71 0, interval: 1, md: {'md': ''}             |
|          | 3 P ramp g       | as_sel: N2, temp_setpoint: 35.0, tem 72 atpoint: 13.0, temp_ramp: 2.0, interval: 1, r   |
|          | 4 P dwell g      | as_sel: Air, dwell: 10, interval: 1, md: 73 motor: sample_stage_x, start: 0.0, stop: 7. |
|          | 5 P ramp g       | as_sel: N2, temp_setpoint: 13.0, tem 74 motor: sample_stage_x, start: 0.0, stop: 7.     |
|          | •                | Þ 4                                                                                     |
| С        | onnection: ONLIN | E Environment: Open • Status: IDLE Running Plan:                                        |

PyQT GUI for interacting with Bluesky Queueserver





8



CK-IT

# GUI STATUS AT ROCK-IT PARTNERS: HZDR HAMSTER



Contact Person: Nicole Wagner - n.wagner@hzdr.de (at NOBUGS between September 24-26)



Image source: https://www.hzdr.de/db/Cms?pNid=3110&pOid=39579#&gid=1&pid=6

HAMSTER (Helmholtz Accelerator Mass Spectrometer Tracing Environmental Radionuclides) - New compact, dedicated AMS facility based on a pelletron tandem accelerator with a maximum terminal voltage of 1 MV (IN PROGRESS).

Two layers of user interfaces at the current AMS-demonstrator:

 (Detailed) Expert-views → EPICSQt (detailed interaction with beamline components).
Web-interface → React + Next.js framework to interact with the BlueSky QueueServer. The web-interface use cases control the AMS-experiment via Bluesky plans, visualizing live data (coming from Ophyd) and historical data (coming from Tiled).

Main facility expected to go into operation next month - a lot of user-interaction will be tested at the test stand. The web-UI is a new interface for the scientific users – functionality to be extended according to the scientists' extended use of the demonstrator. Challenge  $\rightarrow$  to catch unknown use-cases by the scientists, and implement them to the machine commissioning in parallel.

"I would like to get a feeling about recruitment of personnel in the UI-development sector:

**1)** Isn't it easier to get new personnel work on more standardized UI technologies, than in complex frameworks (like daiquiri)?

2) How about ramp up time of those new employees to come to a good performance in developing (comparing standardized UI-technologies and complex frameworks)?"





### GUI STATUS AT ROCK-IT PARTNERS: KIT CATACT Beamline



Contact Person: Anna Zimina - anna.zimina@kit.edu



Image source: https://www.itcp.kit.edu/catact/english/67.php

HELMHOLTZ

**CATACT** - Catalytic research using X-ray spectroscopic techniques.

**Doesn't use GUIs** for the beamline controlling. Their SPEC is the command line based system. The beamline scientist codes the commands simultaneously. KIT's benefit from ROCK-IT: automation system.

No plans to create a GUI for operating - the **experiments change every week** and it is impossible to build a unique GUI for changing setups.

For the optics control - not found necessary. Only very experienced users can try to improve the setting of the optics in a safe manner (not often at CATACT). Every necessary optimization done together with the beamline scientist.

So far, working with **Linux** and no plans so far to find and implement a software to be used for GUIs and that can communicate with SPEC.

"I see challenges on the experimental site, where we have to establish more standards how the measurements need to be done and how the data can be evaluated in a fast and secure manner. The beamline and the detection procedures are already optimized."





# **GUI STATUS AT DESY: SELECTED BEAMLINES**

#### P02.1 – Powder Diffraction and Total Scattering

Contact Person: Alexander Schökel - alexander.schoekel@desy.de

- Beamline control: Most of the standard experiments are run by the Python- and PyQT-based GUI, developed by the (former) beamline scientists. More complicated experiments are run by Python scripts. Detector visualization: Windows program QXRD software. Further processing: PyFAI and DAWN.
- Issues with self-written programs (Python/PyQT) are mostly due to problems with the underlying libraries and dependencies. Updating a library can introduce compatibility issues; this is most severe when upgrading the operating system, because this changes almost all components incl. the Python version.
- What is your GUI strategy going forwards (if any)? What developments are planned or are in progress? What challenges are you facing?

"There is no explicit strategy; the codebase of our current GUI solution is not so well written (several authors, no software development background of the authors and not much time for proper development) and we are considering an overhaul to bring the code to a better shape; time for development is our major obstacle here as we don't have a dedicated programmer in our team and there is currently no central support for development, the programming is mostly done by the beamline scientists; **if we find a little time, we would do the overhaul; should we find "a lot" of time or get help from a dedicated software developer, we might consider a complete new beamline control GUI".** 













# **GUI STATUS AT DESY: SELECTED BEAMLINES**

#### P04 – Variable Polarization XUV Beamline

#### Contact Person: Frank Scholz - frank.scholz@desy.de

HELMHOLIZ

| PETRA III Current                     | optic ready             | screens out   | ps out | V213 V214         | filter  | info field                            | scan active                                                              | ComServer state      | scan info           | ocan time la | -<br>                                  | screen to olog                            |
|---------------------------------------|-------------------------|---------------|--------|-------------------|---------|---------------------------------------|--------------------------------------------------------------------------|----------------------|---------------------|--------------|----------------------------------------|-------------------------------------------|
| Y shutter open s                      | hutter 🥪                | Master E      | nergy  |                   | PG8     | 12 energy 516.979 eV UNDUEA           | TOR Energy                                                               | 353.056 eV           | Exit Sit 20 µm      |              | 370                                    | motor pos to elog                         |
|                                       |                         | Brai          | nch 2  |                   | Bra     | nch 2 Branch 2                        |                                                                          | Branch 2             | Brand               | h 2          |                                        | 10748 221734                              |
| Verview RMU2 central                  | Status 7                | Trends Screen | Fiter  | Vac inti be       | mahutte | r Phil Infoscreen PO4 elog P III elog | INFO Expert                                                              | MultiWidget Multi    | Widget              |              |                                        |                                           |
| Master energy<br>(Hono and Unduistor) |                         | 516.98        |        |                   | ( æ     | Master energy for Branch 2 disabled   | beamine m                                                                | Jors                 |                     |              | Rough energy resp                      | lution estimation.                        |
| Mono energy                           |                         | 516.979 eV    |        | +0317.0           | ŝ 🔵     |                                       |                                                                          |                      |                     |              | Only valid between<br>1 and 500 microm | t<br>eter exit slit!                      |
| Mono Cff                              |                         | 2.00784       |        |                   |         |                                       | exitsR2                                                                  | 20                   | 1                   | 20 µm        | 400 l/mm grating:                      | 57meV                                     |
| Mono Order                            |                         | 1             |        |                   |         |                                       | exsu2bpm                                                                 | -1.00                | -1                  | 00 mm        |                                        |                                           |
| Mirror Name                           |                         | PlaMir_Pt     |        |                   |         |                                       | exsu2baffle                                                              | -1.00                | 4                   | .00 mm       |                                        |                                           |
| Grating Name                          |                         | Biz1200_Pt    |        |                   |         | eux                                   | 2_hor_offset                                                             | 2.628                | 0.0                 | 101 mm       |                                        |                                           |
| UNDULATOR Energ                       |                         | 353.056 eV    |        |                   | 5 0     | ex<br>No offset or factor             | su2_hor_gap                                                              | 47.5780              | 0.00                | 00 mm        |                                        |                                           |
| off and                               | -                       |               |        |                   |         |                                       | smu_rot_z                                                                | -0.37100             | -0.371              | oo deg       |                                        |                                           |
| Desired Gap                           |                         | 14473 µm      |        |                   |         |                                       |                                                                          |                      |                     |              |                                        |                                           |
| UNDULATOR GAP                         |                         | 14473 µm      |        | neg shift: -17925 |         | The undulator has reached the         |                                                                          |                      |                     |              |                                        |                                           |
| UNDULATOR Shift                       |                         | -17925 µm     |        | pos shift: 18200  |         | for a new request.                    | set                                                                      | Swit                 | ch to PoolMotorTV   | Apply        |                                        |                                           |
| UNDULATOR Taper                       |                         | 0 µm          |        |                   |         |                                       |                                                                          |                      |                     |              |                                        |                                           |
| SMU Status                            |                         |               | R      | MU2 Status        |         | print                                 | motor pos to elog                                                        |                      | archive viewer      | 9            | jive                                   |                                           |
| SMU Branch1 🧕                         | SMU Brans<br>trans.xc 3 | ch 1<br>87.9  | U      | indefined         | -       |                                       | as BPH Panel                                                             | 50                   | ve config with name |              | me                                     | data and anterity added<br>achievatically |
| SMU Branch2                           | SMU Brans<br>trans x    | ch 2<br>7.2   | E      | xp Pt             |         | sho                                   | v panel terminal                                                         |                      | load config         | -            | show astor expl                        |                                           |
| CARL Distingues                       | SMU Plate               | oum .         |        | xp 8h             |         |                                       | eithley panel                                                            |                      | bm viewer           |              | show astor exp2                        |                                           |
| and rindinging                        | trans z -3              | 24.0          |        |                   | -       |                                       | iser monitors                                                            |                      | NeXpy               |              | show astor ps                          |                                           |
| SMU Rhodium                           | SMU Rhod<br>trans 2: -  | 9.0           |        | PER I             |         | Outpu                                 | ti                                                                       |                      |                     |              | (Minis)                                |                                           |
|                                       |                         |               | 17     | IPERN             |         | set mod                               | el_exsu 0.42s0)<br>el_valve 1.01s0                                       | ĸ                    |                     |              |                                        |                                           |
| EXSU2 Motor Br                        | eak Status              |               |        |                   |         | set med<br>set med<br>all mede        | al misc 0.40s0)<br>al temp 0.56s0<br>al shutter 0.22s<br>Is set in 5.78s | к<br>ок              |                     |              |                                        |                                           |
| site Break 🍙 on aff                   |                         |               |        |                   | *** 22  | rtuptime 7.8s ##                      |                                                                          |                      |                     |              |                                        |                                           |
| Trans Barah                           | a) on                   | istt.         |        |                   |         | Chuck N                               | orris Tab is now los                                                     | ked again! @04.09.20 | 24 11:10:41         |              |                                        |                                           |



- Beamline completely automated, motorized.
- GUI aim: Getting everything on one screen. Software based on **Python** and **PyQt5**.
- PyTango all values are in Tango servers. If server is not running well, this effects the servers, which makes the user think that the GUI is not running well. The problem is mostly in the backend.
- Communication with motors and detectors is via **Taurus** (Python GUI library), which has defined widgets inside.
- Electronic logbook DOOCS, e-log accessible via web. The Distributed Object-Oriented Control System -DOOCS - provides a versatile software framework for creating accelerator-based control system applications. This is a general solution from DESY. https://doocs.desy.de/
- Issues: The right libraries should be installed on all PC's, so the versions are all the same. One may not have direct access to user libraries. Previously (until 3 years ago) they observed memory leak - memory consumption increased after 8 hours.



# Thank you for your attention

#### More information on ROCK-IT: rock-it-project.de

Zeynep Isil ISIK DURSUN | **DESY** zeynep.isik.dursun@desy.de





#### **PROJECT STRUCTURE**







