From Desktop to Web: The Evolution of Our GUIs from PyQt to React

Cammille Carinan
Software Developer – Data Scientist
Data Analysis Group

Grenoble, France September 23, 2024

European XFEL currently uses PyQt for several of our critical applications

Controls and Data Analysis groups are now transitioning to web technologies

- Advantages:
 - Cross-platform accessibility
 - Modern and responsive interfaces
 - Centralized deployment
- Frontend: Consistent across applications
 - React (JavaScript library)
 - Redux (state management)
- Backend: Implementation varies by application
 - FastAPI (Python web framework)
 - Tailored solutions to meet specific requirements

Karabo (distributed controls system) http://karabo.eu/

DAMNIT

(experiment data and metadata management) https://damnit.rtfd.io/

Karabo in a nut shell: Architecture

- Central Message Broker: RabbitMQ (Control data)
- Event and message driven:
 - Data propagates through the system on value change
 - Signal Slot paradigm: publish and subscribe
- Peer-to-peer TCP connections for fast data
- GuiServer Device:
 - Gateway to the control system
 - TCP connection to application clients

Karabo GUI - The Cockpit

- Python software contained in Karabo framework
 - Separate package installation
- Technology: Qt Library and Traits
- Core feature:

Scene (Panel) Designer Scene Model Interpreter

Extensible via guiextensions:
 a plugin updater for more widgets
 and controllers

Karabo GUI - The Cockpit

- Python software contained in Karabo framework
 - Separate package installation
- Technology: Qt Library and Traits
- Core feature:

Scene (Panel) Designer Scene Model Interpreter

Extensible via guiextensions:
 a plugin updater for more widgets
 and controllers

The Core Feature: The Scene

- Linked to every widget controller is a widget model
 - Separation of model and UI code facilitates external tools and applications
 - Scenes are stored as *.svg
 - The scene model is UI technology independent
- Scenes are stored in central database (ExistDB)

Motivation

- Encapsulate scenes in web form
 - To preserve integrity
 - To combine with other web services and control systems (Synoptic View)
- Hybrid between Qt and Web
 - Build Karabo scenes in Qt GUI Editor
 - Direct Web display
- Use of strong authentication features on the web (LDAP, KeyCloak)
- Server-side deployment instead of application deployment

Motivation

- Encapsulate scenes in web form
 - To preserve integrity
 - To combine with other web services and control systems (Synoptic View)
- Hybrid between Qt and Web
 - Build Karabo scenes in Qt GUI Editor
 - Direct Web display
- Use of strong authentication features on the web (LDAP, KeyCloak)
- Server-side deployment instead of application deployment

Karabo GUI - Strategy

- Backend: GuiServer device used for both Web and Qt Application (share same protocol)
 - WebSocket to TcpSocket mediator
- Technology Stack:
 - Frontend: React, Redux
 - Backend: FastAPI
- Translation of Karabo scene model to web is ongoing
 - Derive synoptic web view (read only) and concept of fast image streaming by beginning of 2026
 - Provide plugin for widget extensions for other applications (Scantool Karabacon) by 2026

Concept: Synoptic web view

Full user-facing experiment in a web view

2025

Work Group (~3 personel)

2026

DAMNIT in a nutshell

- Advanced alternative to traditional spreadsheets, specifically designed for run tables
- Interactive PyQt-based desktop application for data visualization and exploration
- Tabular format allows intuitive management of experimental data and metadata
- Automation through Python scripts for backend data processing and storage, integrated within the interface

DAMNIT talk on the *data reduction session* (Thomas M.) Wednesday, 24. September 2024, 5:10 PM

DAMNIT-web: First Prototype

- Frontend: React, Redux, Apollo GraphQL
- Backend: FastAPI, Strawberry GraphQL
 - OAUTH authentication
 - LDAP authorization
- Benefits of transitioning to web:
 - Enhanced usability with improved interface
 - ► Table pagination with infinite scrolling
 - ► Faster overview and interaction
 - Accessibility outside of the compute cluster
 - ▶ Web-based access
 - ▶ Secure external access
 - Real time updates via GraphQL subscriptions (in development)

Roadmap: From Prototype to Release

Q3 2024

Launched the First Prototype

Collaborative testing begins!

Q2 2025

Introducing Key Features

- Customizable GUI settings
- Advanced context file editor
- Interactive editable cells

Q4 2025

Releasing Version 1.0

- Foundations for future growth
- User-centric development

Implementing Fixes and Integration

- Enabling real time updates
- Deploying to EuXFEL infrastructure

Q4 2024

Driving Continuous Improvements

- Enhanced usability and UX
- Performance and code optimizations

Q3 2025

Questions for the Community

- Transition Experiences
 - Have you undertaken a similar transition from desktop to web-based applications?
 If so, what were the key challenges you faced?
- Maintaining Consistency
 - What best practices have you implemented to maintain consistency across applications during a technology transition?
- Enhancing User Experience
 - What strategies have you found effective in improving user experience when redesigning application interfaces?
- Utilizing Metrics and Insights
 - Do you use metrics and other methods to gather insights that inform your design and development decisions? If so, which metrics and techniques have been most beneficial?