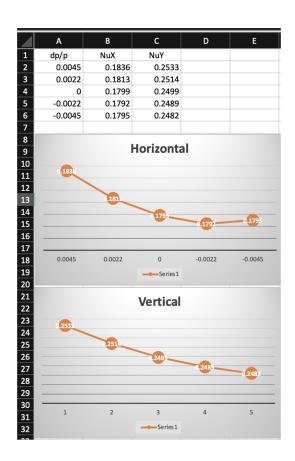


Matlab Middlelayer at Spear3, ALS, Soleil and other Light Sources

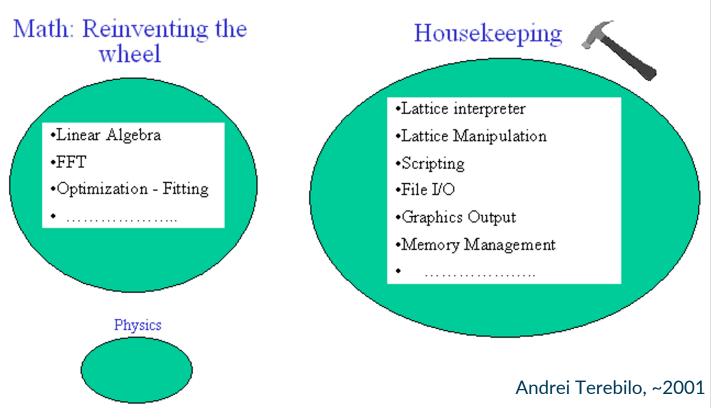
Greg Portmann (ALS / Spear3) Jeff Corbett, Xiaobiao Huang, James SaFranek, Jim Sebek, Andrei Terebilo (Spear3) Dave Robin and Christoph Steier (ALS) Laurent Nadolski (Soleil) Eugene Tan (ASP) and many others



October 4, 2023

I've been writing Matlab code for accelerators since about 1993. Why?

- I saw chromaticity measurements being done in the control room in Excel.
- There's no way we're going to implement SVD orbit correction, ... in Excel. C or C++ was an option but Matlab's active workspace is ideal for shift work.
 - I believe our first study using the original MML was beam base alignment with Dave Robin.


MML Brief History

- Started about 1993 at the ALS to automate physics experiments (orbit, tune, chromaticity correction, quadrupole centering, ...)
- We started using Matlab code during ALS operations out of necessity, and we never stopped Lack of the people working in high level controls
 - The motivation to change working Matlab code is low and it comes with risk.
- Spear3 commissioning effort (early 2000s) Started with the ALS Matlab code and completely rewrote it to be accelerator independent (as much as we could) Andrei Terebilo had written the Matlab tracking code AT LOCO was ported from Fortran to Matlab & AT

The Matlab Toolbox Suite for accelerator physics and commissioning developed in the 2001 – 2004 timeframe for Spear3.

- MiddleLayer + High Level Applications (MML)

 Link between applications and the control system (EPICS, Tango, etc.) or simulator
 Functions to access accelerator data
 Provide a physics function library
- AT Accelerator Toolbox for simulations
- LOCO Linear Optics from Closed Orbits (Lattice calibration, etc.)

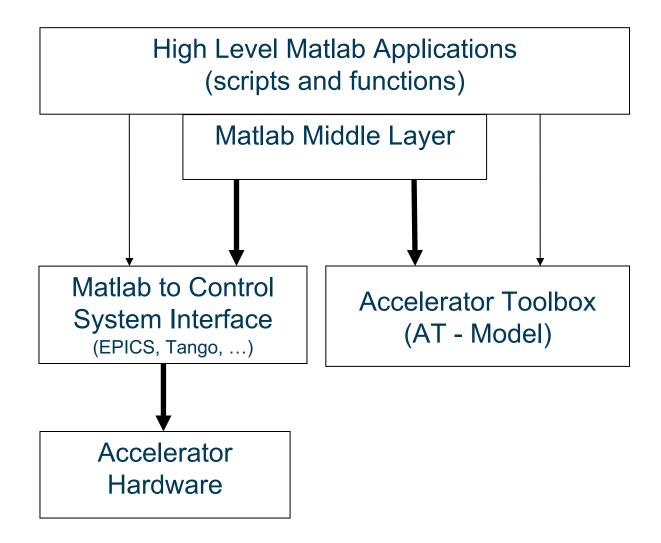
Some of the people ... a while back.

High concentration of MML and AT programmers at this ALS/Spear3 offsite in 2007 Including: Andrei Terebilo (AT)

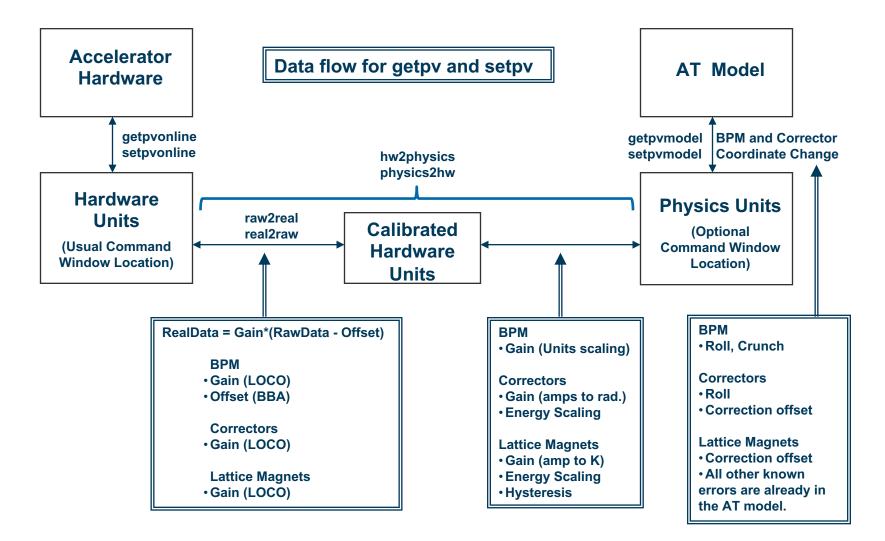
Missing: the CLS control room

Design Plan/Goals

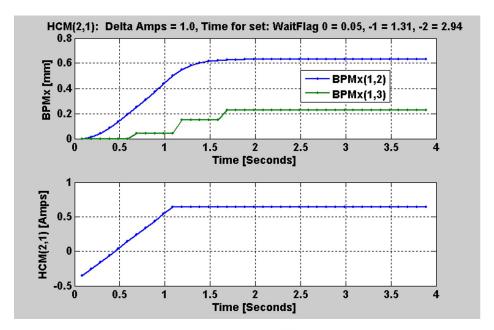
- Accelerator Independent
 - Control system independent
 - Two main functions to change control systems
 - getpvonline, setpvonline
 - Minimize the need to know the control system or a channel name.
 - Work on EPICS, Tango, OPC, and other older control systems
 - AT model independent


Tracking code independent

- Build on AT. We planned to connect to other modeling code but it hasn't happened so far.
 - getpvmodel, setpvmodel
- Be flexible on where data comes from
 - getdata and getrespmat can branch between Matlab data, model data, or data from a server.
- Nothing fancy, keep it simple, ...
 - Clean, readable, commented code
 - No objects (just expose the structures)
 - Although, mml objects are available
 - The target audience was non-professional programmers


Software Interconnection Diagram

Middlelayer Data Flow Diagram



Challenges

- The most difficult step was to make it accelerator independent. But it greatly improved the code.
 - Needed to be very flexible on units and conversions (hw2physics and physics2hw)
 - Forces abstraction instead of hardcoding.
 - Needed the .MemberOf field to know what the families were.
 - X, Y, BPMx, BPMy, BPMz, ...
 - HCM, HCOR, HC, XCOR, ...
 - ...
- Timing setpoint change and data taking
 - WaitFlags in setpv.
 Knowing when the setpoint change is complete and when monitors, like orbit and tune data, are ready to read.
- Data management

ADVANCED LIGHT SOURCE

Data, Data, and more Data

- Beam Position Monitors
 - Channel names, gains, roll, crunch, offsets, golden, standard deviations
- Magnets
 - Channel names, gains, offsets, roll, setpoint-monitor tolerance, amp-to-simulator conversions, hysteresis loops, max/min setpoint
- Response matrices (Orbit, Tune, Chromaticity)
- Lattices (Save and restore)
- Measurement archiving
 - Dispersion, tunes, chromaticity, quadrupole centers

Management of data within Matlab is easy.

Sharing data with other applications is not so easy.

MML Setup Data Structures (1)

>> ao = getao;

>> ao.HCM

FamilyName: 'HCM' MemberOf: {3×1 cell} DeviceList: [98×2 double] ElementList: [98×1 double] Status: [98×1 double] Position: [98×1 double] BaseName: {98×1 cell} DeviceType: {98×1 cell} CommonNames: [98×11 char] Monitor: [1×1 struct] Setpoint: [1×1 struct] Trim: [1×1 struct] FF1: [1×1 struct]

FF2: [1×1 struct] FFMultiplier: [1×1 struct] Sum: [1×1 struct] DAC: [1×1 struct] RampRate: [1×1 struct] TimeConstant: [1×1 struct] OnControl: [1×1 struct] On: [1×1 struct] Reset: [1×1 struct] Ready: [1×1 struct] AT: [1×1 struct] Gain: [98×1 double] Roll: [98×1 double]

MML Setup Data Structures (2)

>> ao.HCM.Setpoint MemberOf: {9×1 cell} Mode: 'Simulator' DataType: 'Scalar' ChannelNames: [98×19 char] HW2PhysicsFcn: @amp2k Physics2HWFcn: @k2amp Units: 'Hardware' HWUnits: 'Ampere' PhysicsUnits: 'Radian' RunFlagFcn: @getrunflagcm Range: [98×2 double] Tolerance: [98×1 double] DeltaRespMat: [98×1 double]

>> ao.HCM.Setpoint.MemberOf
 {'PlotFamily' }
 {'Save/Restore'}
 {'COR' }
 {'Horizontal' }
 {'Horizontal' }
 {'HCM' }
 {'Magnet' }
 {'Setpoint' }
 {'measbpmresp' }
 {'Archive' }

Typically only one or two people at a facility maintain the MML setup data structures.

MML Data Structures

Basic Data Structure

>> getpv('HCM', 'Monitor', 'Struct')
 Data: [98×1 double]
FamilyName: 'HCM'
 Field: 'Monitor'
 DeviceList: [98×2 double]
 Status: [98×1 double]
 Mode: 'Online'
 Units: 'Hardware'
 UnitsString: 'Ampere'
DataDescriptor: 'Get by FamilyName'
 CreatedBy: 'getpv'
 DataTime: [98×1 double]
 TimeStamp: [2023 10 8 16 55 19.8041]

Response Matrix Data Structure

>> r = getbpmresp('struct');
>> r(1,1)

Data: [122×98 double] Monitor: [1×1 struct] Actuator: [1×1 struct] ActuatorDelta: [98×1 double] Monitor1: [122×98 double] Monitor2: [122×98 double] Units: 'Hardware' UnitsString: 'mm/Ampere' GeV: 1.8909 TimeStamp: [2023 10 4 16 22 58.9844] DCCT: 55.7607 ModulationMethod: 'bipolar' WaitFlag: -2 ExtraDelay: 0 DataDescriptor: 'Response Matrix' CreatedBy: 'measrespmat' OperationalMode: 'Pseudo-Single Bunch (0.18,0.25)' FileName: '/home/als/physbase/mmlt/machine/ALS/StorageRi ngOpsData/PseudoSingleBunch/GoldenBPMResp_L owEmittance'

I. Basic Calling Syntax (the middelayer part)

Naming Convention

Family = Group descriptor(text string)Field = Subgroup descriptor(text string)DeviceList = [Sector Element-in-Sector]

Basic Functions

getpv(Family, Field, DeviceList);
setpv(Family, Field, Value, DeviceList);
steppv(Family, Field, Value, DeviceList);

These functions can branch between the model and online.

Examples:

x = getpv('BPMx', 'Monitor', [3 4;5 2]); h = getpv('HCM', 'Setpoint', [2 1;12 4]); setpv('QF', 'Setpoint', 81);

ALS Naming Scheme

Families

Bend magnets – BEND Quadrupoles – QF, QD, QFA, QDA Sextupoles – SF, SD Skew quadrupoles - SQSF, SQSD Correctors – HCM, VCM Beam position monitors – BPMx and BPMy Insertion devices – ID, EPU Other - RF, DCCT, TUNE, Energy

Fields

Setpoint, Monitor, RampRate, RunFlag, DAC, OnOff, Reset, Ready, Voltage, Power, Velocity, HallProbe, etc...

Name Server: EPICS Channel Finder

RKFI F

At the ALS, the channel finder service tags channels using the same "Accelerator, Family, Field, Device" scheme as in the MML.

Controls I	Main ×	Ops L	aunche	r× ALS	Launcher >	< Linac >	K MOD1	× MOD2 ×	miniDCCT ×	EPBI ×	Channel Ta	ble × Chann	el Table ×
Query:	* Acc=	=SR Fam	ily=QF	Field=Set	point Secto	or=* Devi	ce=*						
n	ame		Acc	Family	Field	Sector	Device	Position	Gold	en	archive	recordType	iocName
SR01C	QF1	AC02	SR	QF	Setpoint	1	1	3.378696	96.90806334	4168553	Fast	ao	ffbsec01
SR01C	QF2	AC03	SR	QF	Setpoint	1	2	12.677306	96.54851174	3507575	Fast	ao	ffbsec01
SR02C	QF1	_AC02	SR	QF	Setpoint	2	1	19.778696	95.67546942	0609659	Fast	ao	ffbsec02
SR02C	QF2	AC03	SR	QF	Setpoint	2	2	29.077306	96.25629257	026965	Fast	ao	ffbsec02
SR03C	QF1	AC02	SR	QF	Setpoint	3	1	36.178696	96.25499375	5862387	Fast	ao	ffbsec03
SR03C	QF2	AC03	SR	QF	Setpoint	3	2	45.477306	94.96899315	4771908	Fast	ao	ffbsec03
SR04C	QF1	_AC02	SR	QF	Setpoint	4	1	52.578696	97.36266856	0344588	Fast	ao	ffbsec04
SR04C	QF2	AC03	SR	QF	Setpoint	4	2	61.879111	96.99748131	.0809263	Fast	ao	ffbsec04
SR05C	QF1	_AC02	SR	QF	Setpoint	5	1	68.980501	95.70388698	7555819	Fast	ao	ffbsec05
SR05C	QF2	AC03	SR	QF	Setpoint	5	2	78.279111	95.28859316	9344963	Fast	ao	ffbsec05
SR06C	QF1	_AC02	SR	QF	Setpoint	6	1	85.380501	96.44757318	80643431	Fast	ao	ffbsec06
SR06C	QF2	AC03	SR	QF	Setpoint	6	2	94.679111	96.50602041	.01957	Fast	ao	ffbsec06
SR07C	QF1	AC02	SR	QF	Setpoint	7	1	101.780501	95.74434734	4953354	Fast	ao	ffbsec07
SR07C	QF2	AC03	SR	QF	Setpoint	7	2	111.079111	96.56681685	0643619	Fast	ao	ffbsec07
SR08C	QF1	_AC02	SR	QF	Setpoint	8	1	118.180501	96.15799988	863688	Fast	ao	ffbsec08
SR08C	QF2	AC03	SR	QF	Setpoint	8	2	127.480916	97.18719441	846909	Fast	ao	ffbsec08
SR09C	QF1	AC02	SR	QF	Setpoint	9	1	134.582305	95.34805839	70734	Fast	ao	ffbsec09
SR09C	QF2	AC03	SR	QF	Setpoint	9	2	143.880916	96.18249707	0246868	Fast	ao	ffbsec09
SR10C	QF1	AC02	SR	QF	Setpoint	10	1	150.982306	96.26678358	2685619	Fast	ao	ffbsec10
SR10C	QF2	_AC03	SR	QF	Setpoint	10	2	160.280916	95.86179780	5405516	Fast	ao	ffbsec10
SR11C	QF2	_AC03	SR	QF	Setpoint	11	2	176.680916	95.54326854	0128	Fast	ao	ffbsec11
SR11C:QI	F1:Setp	point	SR	QF	Setpoint	11	1	167.382306	95.77525481	.1217167	Fast	ao	genesys
SR12C	QF1	_AC02	SR	QF	Setpoint	12	1	183.782306	96.48420006	3890142	Fast	ao	ffbsec12
SR12C	QF2_	AC03	SR	QF	Setpoint	12	2	193.082721	106.2144888	5069287	Fast	ao	ffbsec12

Scripting Example: Orbit Correction in 6 lines

```
% Get the horizontal response matrix
Rx = getrespmat('BPMx', 'HCM'); % 122x94 matrix at ALS
```

```
% Computes the SVD of the response matrix
lvec = 1:48;
[U, S, V] = svd(Rx, 0);
```

```
% Get the vertical orbit
X = getpv('BPMx');
% Find the corrector changes
DeltaAmps = -V(:,Ivec) * S(Ivec,Ivec)^-1 * U(:,Ivec)' * X;
```

```
% Changes the corrector strengths
steppv('HCM', 'Setpoint', DeltaAmps);
```

Add a loop => Slow Orbit feedback

Controls & Instrumentation

Supported Systems and Devices

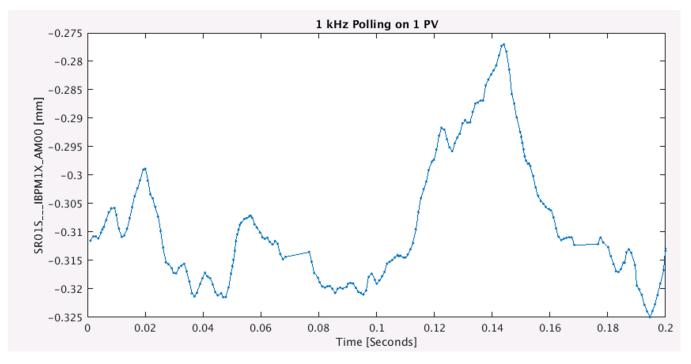
- Fast magnets
- Power supplies
- Vacuum systems
- Diagnostic systems
 - Beam Position Monitors (BPMs), fast orbit feedback
 - Scopes
 - Scintillators (fluorescent screens) and CCD cameras
 - Photon Beam Position Monitors (PBPMs),
 - Beam current (DCCT, ICT)
 - Bunch current monitor
 - Beam loss monitors
 - Vacuum chamber/girder/floor motion monitors
 - ...

. . .

- RF systems
- Machine protection systems (MPS)
- Facilities data (temperatures, ...)
- Control room to support operations and physics

II. Function Library

There are hundreds of functions for accelerator control

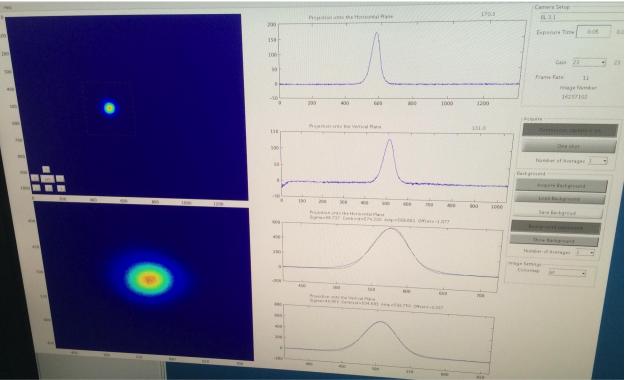

- setorbit general purpose global orbit correction function
- setorbitbump general purpose local bump function
- settune sets the storage ring tune
- setchro sets the storage ring chromaticity
- measchro measure the chromaticity
- measdisp measure the dispersion function
- quadcenter, quadplot finds the quadrupole center
- physcis2hw converts between physics and hardware units
- measbpmresp measure a BPM response matrix
- measlifetime computes the beam lifetime
- minpv/maxpv min/max value for family/field
- srcycle standardizes the storage ring magnets
- scantune scan in tune space and record the lifetime
- scanaperture scans the electron beam in the straight sections and monitors lifetime
- finddispquad finds the setpoint that minimizes the dispersion in the straight sections.
- rmdisp adjusts the RF frequency to remove the dispersion component of the orbit by fitting the orbit to the dispersion orbit
- Etc. (thousands of scripts and functions have been written)

Matlab - LabCA Polling Speed

1. One PV -> 1 kHz polling (4 kHz is about the maximum rate)
x = getpv('BPMx', 'Monitor', [1 1], 0:.001:.2);

2. 120 PVs -> 1 kHz polling is about the maximum but there is some variation in the sampling time.
x = getpv('BPMx', 'Monitor', [], 0:.001:.2);

Note: these numbers improve every year.



Matlab Waveform Speed in EPICS

BL 3.1 CCD Camera

>> tic; Image = getpv('BL31:image1:ArrayData', 'native', 1038*1390); toc
Elapsed time is 0.08 seconds (12.5 Hz)

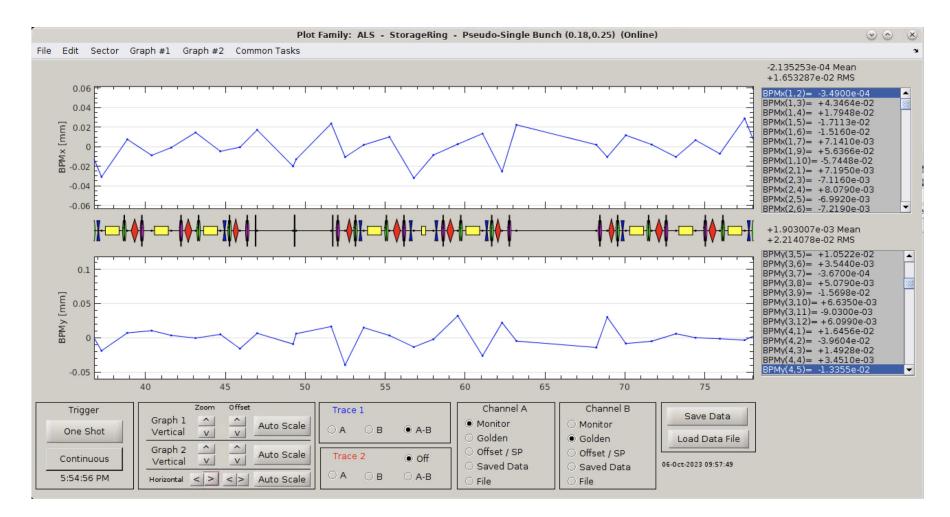
1038*1390*16 / 2^20 = 22.0 Mbits (~1.44M points in .08 seconds)

BPM

>> tic; X = getpv('BR2:BPM3:wfr:TBT:X','waveform'); toc;

Elapsed time is 0.114679 seconds. (2.1M points)

MML Applications

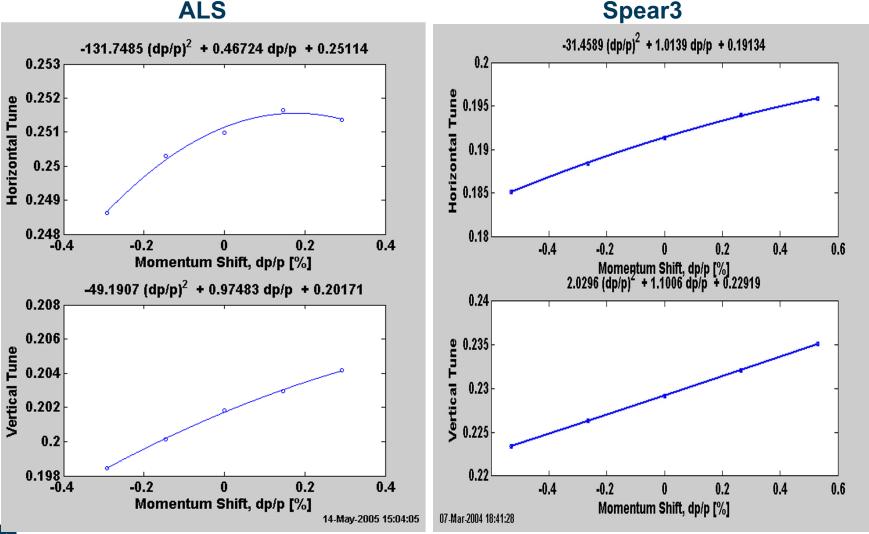

High Level Applications in Matlab

- Save/ restore / configuration control
- Orbit correction and slow orbit feedback
- Insertion device focusing compensation
- Quadrupole centering
- Display (plotfamily, mmlviewer)
- Transport line tuning
- CCD cameras
- Energy Ramping
- General scripting language for machine shifts
- LOCO (Response matrix analysis, machine calibration)
- ...

-> Many applications can be run and optimized before the accelerator is build. It's highly recommended to test orbit correction, tune correction, quadrupole centering, and LOCO before finalizing the lattice design.

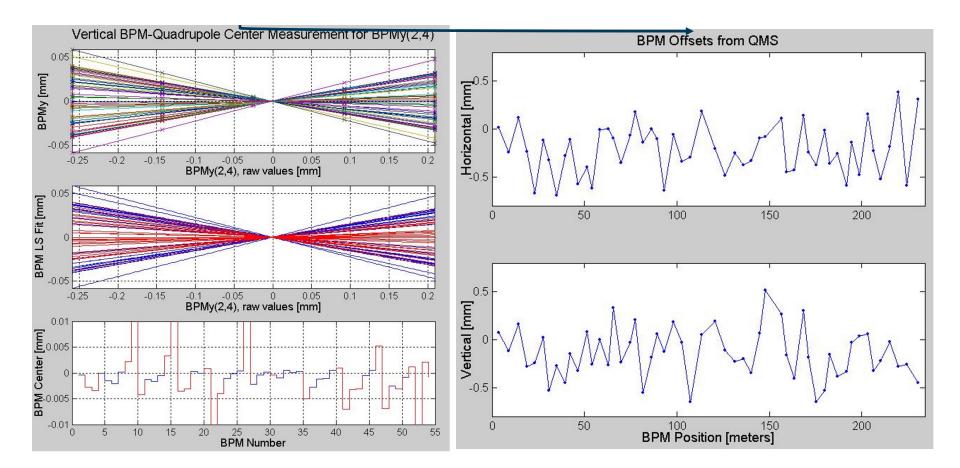
plotfamily application

See also mmlviewer viewfamily

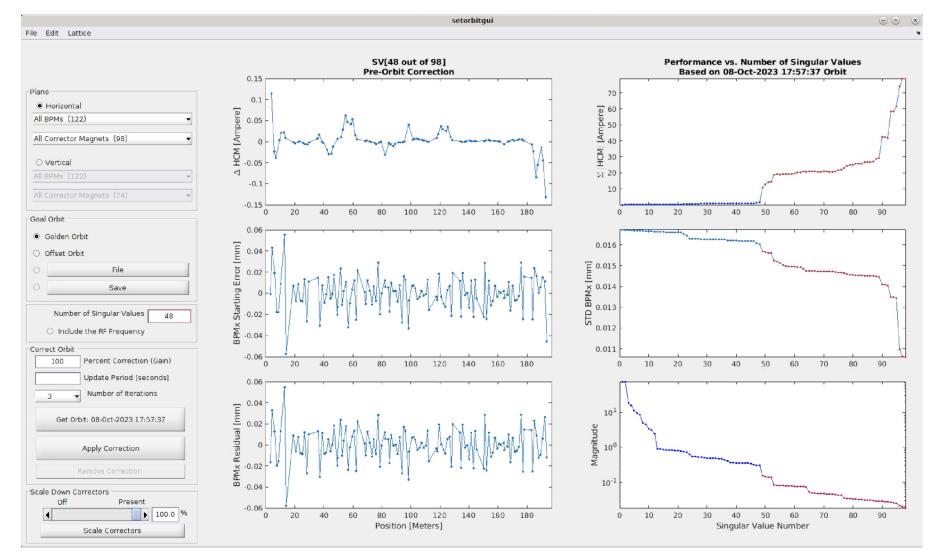

BERKELEY LAB

Chromaticity Measurement

Accelerator Independent

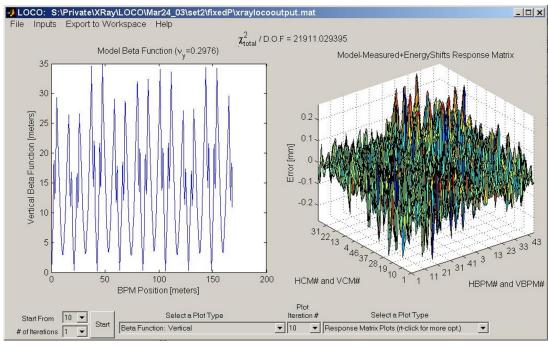

ALS

ADVANCED LIGHT SOURCE


Beam-based Alignment

Orbit Correction

Save/Restore

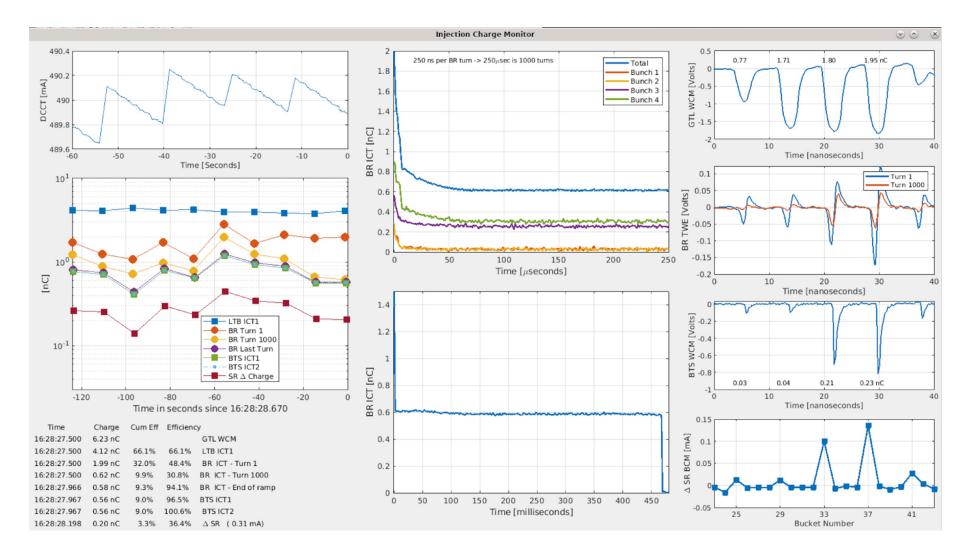

00)		hine/ALS/StorageRingOpsData/PseudoSingleBunch/GoldenConfig_LowEmittance ate (3:35:53 PM) Saved Values for Viewing Only (No Rest						ais/pnysbase/r	n me: /nome/ais/p	e from golde		Restore Ta	
			,				M)	Update (3:3	_					
				Select	Field		Family					Select	Field	Family
		·	-	•		Moni	BPMx		stores only			~	Setpoint	нсм
				✓	enSetpoint		BPMx		selected item	sele		¥	Setpoint	VCM
				✓ ✓	enSetpoint	Moni	BPMy BPMy					v	Setpoint Setpoint	QF QD
		-		 ✓ 		Moni	НСМ		estore Setpoin	Porto		 	Setpoint	QFA
				~	LUI	Trim	HCM		escore Serpoir	Resid		 	Setpoint	QDA
				 ✓ 		FF1	НСМ					 ✓ 	Setpoint	SF
				v		FF1 FF2	HCM					v	Setpoint	SD
				V		DAC	нсм	nges	individual ch			~	Setpoint	SHF
				V	pRate		НСМ		e present co			¥	Setpoint	SHD
				v v		Moni	VCM		e present co	to the pi		v v	Setpoint	SQSF
				•		Trim	VCM					~	RampRate	SQSF
				 ✓ 		FF1	VCM		Edit Mode is O	Edit		•	Setpoint	SQSD
				v v		FF1 FF2	VCM		Edit Mode is O	Edit		v v	RampRate	SQSD
				~		DAC	VCM					~	Setpoint	SQSHF
				 ✓ 	pRate		VCM					v	Setpoint	BEND
				~	pilate		HCMFOFB					~	Setpoint	HCMCHICANE
ne	Nor	All		~			HCMFOFB	one		All		~	Setpoint	HCMCHICANEM
				V			HCMEOEB			•		•	Setpoint	TOPSCRAPER
		Channel No.	Difference		Count				al Name	Channeller	Difference			
		Channel Name	Difference	Present	Saved	mon Name				Channel Na	Difference	Present	Saved	Common Name
		SR01C:BPM1:SA:X		0.0507	-0.2240	2) (Monitor)				SR01C_HCM2		2.1535	2.4834	SR01C HCM2
		SR01C:BPM2:SA:X		-0.3541	-0.3511	3) (Monitor)				SR01C_HCM3_		-2.9254	-2.8546	SR01C HCM3
		SR01C:BPM3:SA:X		-0.0604	0.6160	4) (Monitor)				SR01C_HCM4		2.1394	2.0643	SR01C HCM4
		SR01C:BPM4:SA:X		-0.0731	0.1075	5) (Monitor)				SR01C_HCSD1		-0.2369	-0.1861	SR01C HCSD1
		SR01C:BPM5:SA:X		-0.1226	0.8042	6) (Monitor)				SR01C_HCSD2		0.4499	0.4834	SR01C HCSD2
		SR01C:BPM6:SA:X		-0.0154	0.4016	7) (Monitor)				SR01C_HCSF1		-0.4024	-0.4171	SR01C HCSF1
		SR01C:BPM8:SA:X		-0.0466	-0.1969	9) (Monitor)				SR01C_HCSF2		-1.3695	-1.6436	SR01C HCSF2
		SR02C:BPM2:SA:X		0	0.0504	3) (Monitor)				SR02C_HCM1_		-1.2647	-0.8611	SR02C HCM1
		SR02C:BPM3:SA:X		-0.0356	0.6727	4) (Monitor)				SR02CHCM2_ SR02CHCM3_		3.8261	3.2098	SR02C HCM2
		SR02C:BPM4:SA:X SR02C:BPM5:SA:X		0	0.9610	5) (Monitor) 6) (Monitor)				SR02CHCM3_ SR02CHCM4		3.7702	4.3154	SR02C HCM3 SR02C HCM4
		SR02C:BPM5:SA:X		0.0429	1.4760 0.5538	7) (Monitor)				SR02CHCSD1		-1.2178 1.0369	-1.3294 1.1803	SR02C HCM4 SR02C HCSD1
		SR02C:BPM0:SA:X		-0.0942	-0.7323	8) (Monitor)				SR02CHCSD2		-0.5868	-0.7575	SR02C HCSD1
		SR02C:BPM7:SA:X		0.1865	-0.7323	9) (Monitor)				SR02CHCSF1		0.7393	0.4060	SR02C HCSD2
	Y	SR025:IDBPM1:SA:X		0.8278	0.9191	10) (Monit				SR02C HCSF2		-1.2345	-1.3653	SR02C HCSF2
		SR025:IDBPM2:SA:X		-0.0093	0.4214	1) (Monitor)				SR03C HCM1		-0.7456	-0.9174	SR02C HCS12
	^	SR03C:BPM1:SA:X		-0.2462	-0.0324	2) (Monitor)				SR03CHCM2_		1.3624	1.6622	SR03C HCM2
		SR03C:BPM2:SA:X		-0.0766	0.1959	3) (Monitor)				SR03CHCM3_		6.2632	5.3772	SR03C HCM3
		SR03C:BPM3:SA:X		0.0751	0.6309	4) (Monitor)				SR03CHCM4		-1.2626	-0.7731	SR03C HCM4
		SR03C:BPM4:SA:X		-4.9772	0.6270	5) (Monitor)				SR03C HCSD1		-1.4993	-1.7643	SR03C HCSD1
		SR03C:BPM4:SA:X		-0.2376	0.8826	6) (Monitor)				SR03CHCSD1		-0.1552	-0.1011	SR03C HCSD1
		SR03C:BPM6:SA:X		-0.1485	1.1059	7) (Monitor)				SR03CHCSF1		0.1154	0.0987	SR03C HCSD2
		SR03C:BPM7:SA:X		0.0370	-0.0021	8) (Monitor)				SR03C HCSF2		-0.4230	-0.6371	SR03C HCSF2
		SR03C:BPM8:SA:X		-0.2268	0.3373	9) (Monitor)				SR04C HCM1		-0.9424	-0.6833	SR04C HCM1
		SR04C:BPM1:SA:X		-0.1445	0.3373	2) (Monitor)				SR04C_HCM2		-0.6885	-1.3519	SR04C HCM2
		SR04C:BPM2:SA:X		-0.2835	-0.3872	3) (Monitor)				SR04C HCM3		-2.6350	-4.3273	SR04C HCM3
		SR04C:BPM3:SA:X		0.0524	0.6497	4) (Monitor)				SR04C_HCM4		1.8860	2.8719	SR04C HCM4
		SR04C:BPM6:SA:X		0.0536	0.6646	7) (Monitor)				SR04C HCSD1		1.5084	1.6749	SR04C HCSD1
		SR04C:BPM7:SA:X		0.1143	-0.4437	8) (Monitor)				SR04C HCSD2		-0.6395	-0.5050	SR04C HCSD2
		SR04C:BPM8:SA:X		-0.0270	-0.0949	9) (Monitor)				SR04C_HCSF1		-0.8029	-1.1413	SR04C HCSF1
	AMOO	SR04C BPM4XTFA		-0.1283	0.5018	5) (Monitor)				SR04C HCSF2		0.0204	0.0051	SR04C HCSF2
		SR04C BPM5XTFA		-0.0248	1.2218	6) (Monitor)				SR04U HCM2		3.8465	3.8831	SR04U HCM2
		SR045:IDBPM1:SA:X		0.0152	1.5293	10) (Monit				SR05C HCM1		-0.0586	0.4487	SR05C HCM1
		SR045:IDBPM2:SA:X		0.0523	1.5479	1) (Monitor)				SR05C HCM2		-1.2428	-2.2776	SR05C HCM2
		SR045:IDBPM3:SA:X		-0.0351	0.8979	11) (Monit				SR05C_HCM3		-2.6524	-3.4285	SR05C HCM3
		SR045:IDBPM4:SA:X		-0.0474	0.8961	12) (Monit				SR05C HCM4		1.9160	2.3152	SR05C HCM4
		SR05C:BPM1:SA:X		-0.0868	-0.2213	2) (Monitor)				SR05C HCSD1		1.5049	1.6053	SR05C HCSD1
		SR05C:BPM2:SA:X		-0.0101	-0.1088	3) (Monitor)				SR05C_HCSD2		1.1270	1.0667	SR05C HCSD2
		SR05C:BPM3:SA:X		0.1833	0.3370	4) (Monitor)				SR05C_HCSF1		-1.2453	-1.4808	SR05C HCSF1
		SR05C:BPM4:SA:X		-0.1247	0.5935	5) (Monitor)				SR05C HCSF2		-0.7995	-0.8600	SR05C HCSF2
		SR05C:BPM5:SA:X		0.12.17	0.2702	6) (Monitor)				SR06C HCM1		2.1691	2.7772	SR06C HCM1
		SR05C:BPM6:SA:X			0.1819		BPMx(5,7)							

LOCO Optics Analysis

- Calibrate/control optics using orbit response matrix
- Determine quadrupole gradients
- Correct coupling
- Calibrate BPM gains, steering magnets
- Measure local chromaticity and transverse impedance

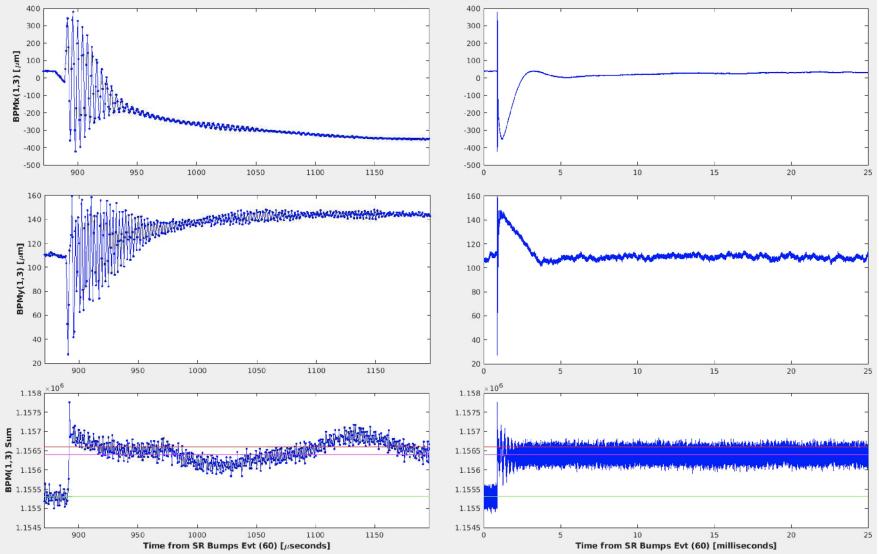
- ← MATLAB version of LOCO
 - Rewritten from FORTRAN
 - Linked to AT simulator
 - Compatible with the MMLT
 - Easy to measure LOCO data with the MML
 - measlocodata
 - Relatively easy to import response matrix data
 - buildlocoinput
 - Relatively easy to apply result back to the accelerator (*setlocodata*).

Accelerator Specific Applications


There are many more accelerator specific applications than accelerator independent applications.

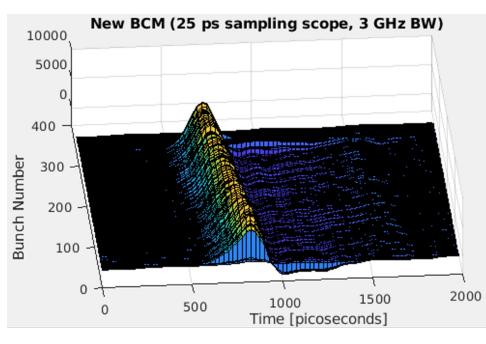
However, these applications are typically control system independent so they are often relatively easy to port to a different facility.

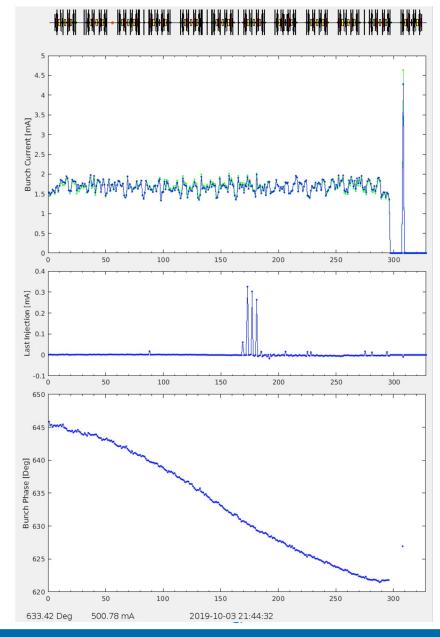
Injection Charge Monitor at ALS



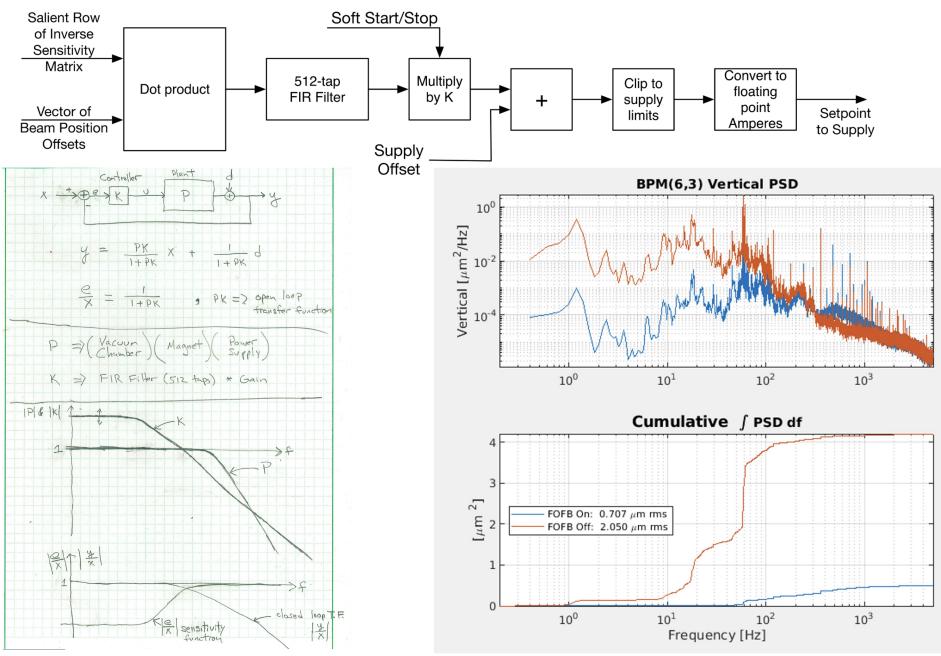
SR Injection Orbit and Tunes

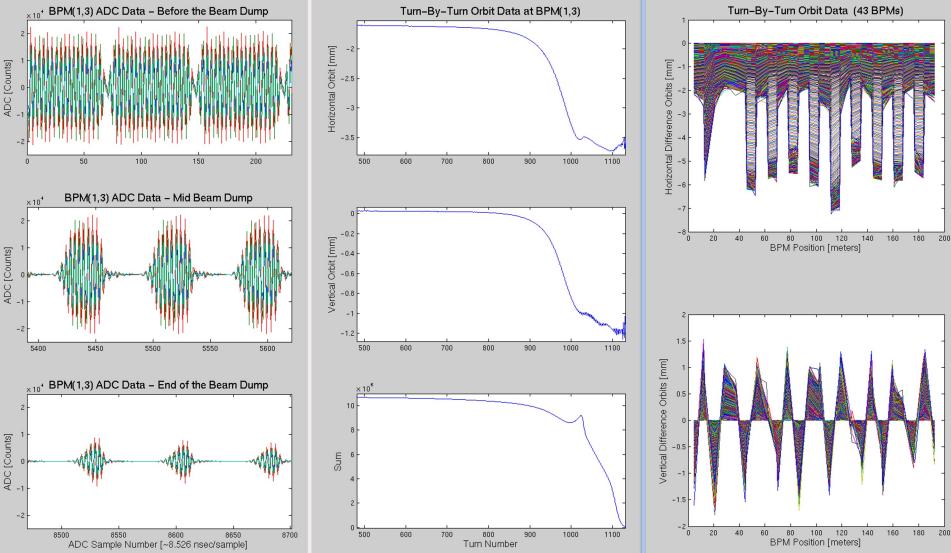
NuX = 16.1532 (16.1650 TFB) NuY = 9.2480 (9.2501 TFB)



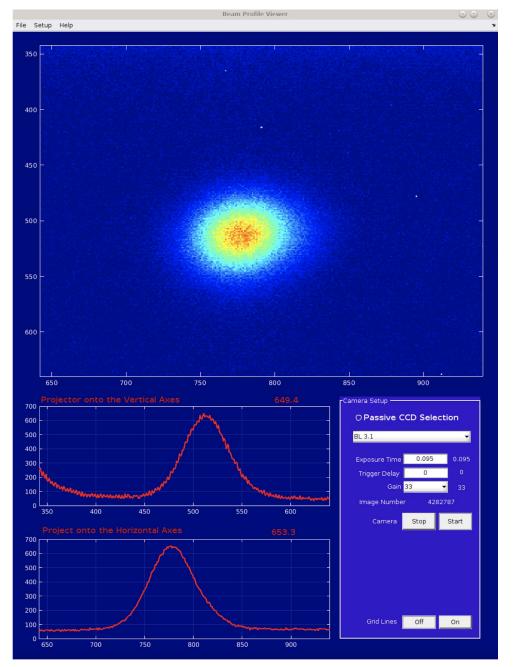


Bunch Current and Phase

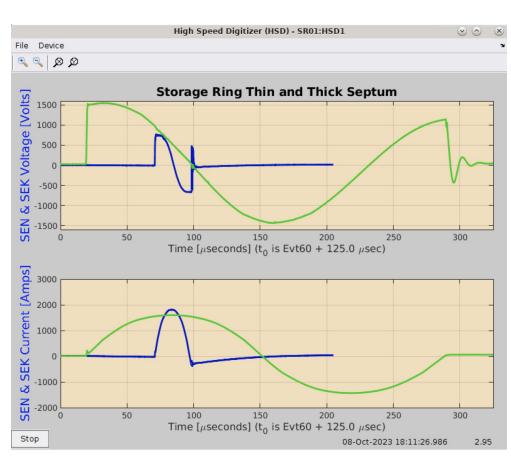

A Matlab application post-process the data from an FPGA based sampling scope and provides bunch current and phase information 24/7 in the control room.

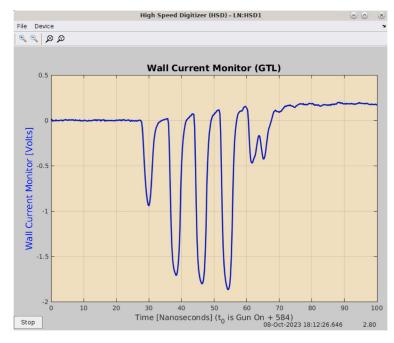


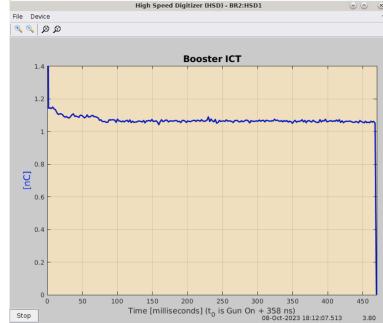
Fast Orbit Feedback Setup and Monitorting

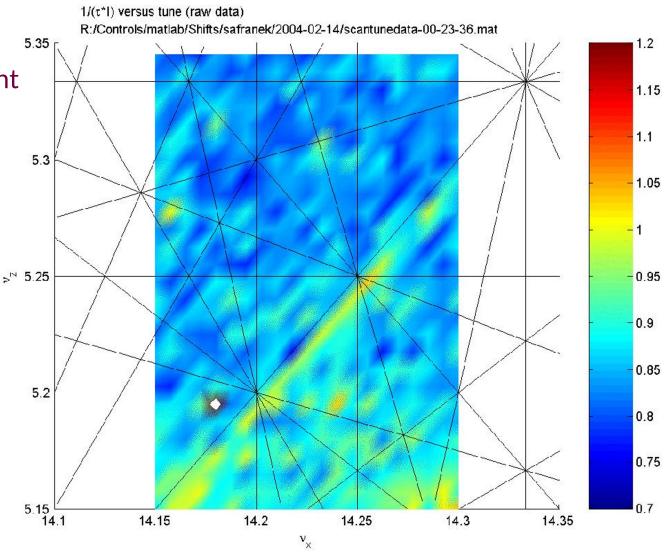

Beam Dump Orbit Capture

ADVANCED LIGHT SOURCE


CCD Cameras






Spear3 - Lifetime vs. tunes

Spear3 Measurement

• Resonant line:

 $v_x - v_y = 9$

- Operating tunes (5.19, 6.23)
- Data gathered automatically on owl shift.

ADVANCED LIGHT SOURCE

Storage Ring Control & Topoff

-	SF	CONTRO	L	-		×
Sav	e	Restore	ł	Help		3
Ps	euo	to-Single	Bu	nch ((0.18	,0.25)
		Storage R	ling	Star	tup	
	C	hange Op	erat	ional	Mod	le
		Hardware	Init	ializa	tion	
Turn Off Turn On						
		Cycle :	SR L	attic	e	
		Lattice	Fun	ctio	15	

etup For Injection (1.9 G

Setup For Users (1.9 GeV)

Check For Problems

Golden Page

Global/Local Orbit Correction Correct Global Orbit Edit BPM, CM, & Local Bump Lists

Orbit Feedback

Slow Orbit Correction
 Fast Orbit Correction
 Correct ID Tune Shift
 Correct RF Frequency
 Tune Feedback

Start FB Stop FB
Horizontal RMS = mm
Vertical RMS = mm
Edit SOFB Setup
01
Edit FOFB Setup
nux nuy corr x/y
Storage Ring State

Lattice cycled, ready for

SRControl

- Setups up the lattice, standardizes (cycles) the magnets
- Slow orbit feedback
- ID tune correction
- Tune feedback

Note: 150 to 200 magnets change when an ID moves.

🛃 TOPOFF 🗕 🗆 🗙							
Top-Off Control Panel Pseudo-Single Bunch (0.18,0.25)							
🗹 Camshaft 🛛 🗹 Cleaning							
🕑 Bunch Equali 📃 Parasite							
LINAC tuning							
Booster tuning BTS tuning							
Equalize before filling							
Fill cam buckets befor							
Start TO Stop TO Bucket =							
Gun Width = ns							
Current = mA, CAM = mA							
BTS = nC, efficiency =							
Storage Ring State							
Edit Para							

Topoff

- Controls the fill pattern
- Coordinates injector tuning during user operations
- Computes the lifetime and transfer efficiencies.

MML2EDM

EDM screen generated from with Matlab

- EDM applications can be tedious to build.
- MML has channel names arranged by families.
- Adding/subtracting a device is easy and less error prone.

			BE	ND								Q	FA		
Name	Golden	Setpoint	Monitor	RampRate R	Rdy O	n OnControl	Reset		Name	Golden	Setpoint	Monitor	RampRate Rdy	On On	Contr
BEND(1,1)	896.815	896.815	897.531	10.500		OFF ON	Reset	🔲 More	QFA(1,1)	492.554	492.554	491.865	5.900	OFF	FOI
END(4,2)	298.500	298.500	298.324	0.400		OFF ON	Reset	🔲 More	QFA(4,1)	523.003	523.003	523.364	5.900	OFF	FO
8END(8,2)	298.600	298.600	298.452	0.400		OFF ON	Reset	🔲 More	QFA(8,1)	523.003	523.003	523.254	5.900	OFF	FO
BEND(12,2)	298.460	298.460	298.233	0.400		OFF ON	Reset	🔲 More	QFA(12,1)	523.003	523.003	523.449	5.900	OFF	FO
		ALL				ALL	ALL	J			ALL				ALL
SF					QDA Name Golden Setpoint Monitor RampRate Rdy On OnCon						Cont				
Name Golden Setpoint Monitor RampRate Rdy On OnControl Reset						QDA(4,1)	72.005	72.005	72.085			FO			
SF(1,1) 372.012 372.012 372.214 1.000 OFF ON Reset OM More					QDA(4,2)	83.839	83.839	83.830	1.000		FO				
									QDA(8,1)	81.100	81.100	81.126	1.000	OFF	F O
									QDA(8,2)	72.246	72.246	72.276	1.000	OFF	FO
			SD)					QDA(12,1)	81.493	81.493	81.513	1.000	OFF	FO
Name Gol	lden Set	point Mo	nitor Ran	npRate Rdy	On O	nControl R	eset		QDA(12,2)	86.055	86.055	86.102	1.000	OFF	
SD(1,1) 253	3.461 25	3.461 253	3.331	1.000	0	OFF ON R	eset	More			ALL				AL

Recently Pheobus screen generation program was written in Python, but I haven't written the a MML2Pheobus function yet. Since Matlab can call Python functions this should be relatively straightforward to do.

ADVANCED LIGHT SOURCE

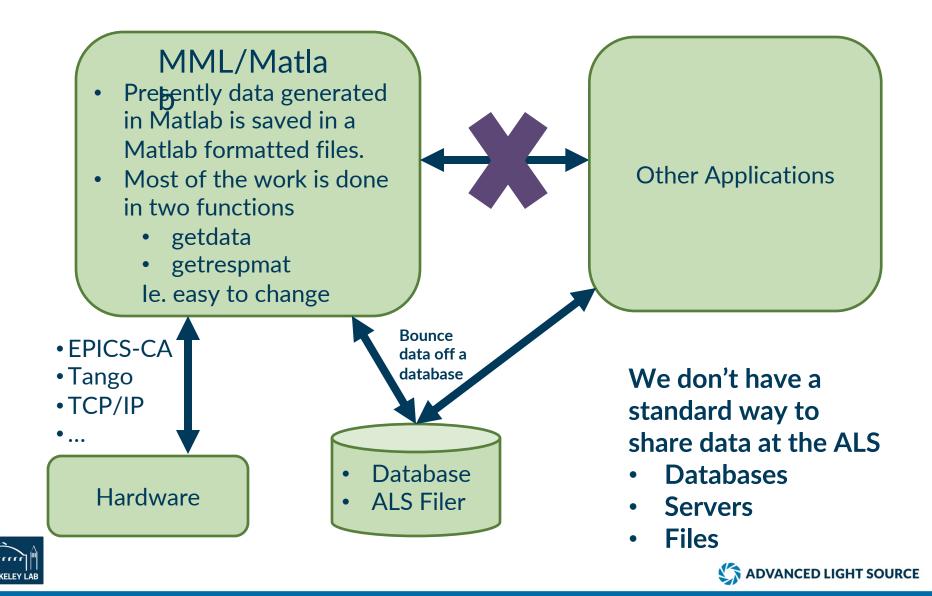
Who Uses the MML Software

MML (~15 labs, maybe more, maybe less)

USA: ALS (Berkeley), Spear3 (Stanford), Duke FEL, NSLS-II (Brookhaven)

Canada: CLS

- Europe: Soleil (France), Solaris (Poland), DIAMOND (England), ALBA (Spain), ELSA (Germany), MaxIV (Sweden)
- Asia: PLS2 (Korea), SSRF (Shanghai), TLS/PLS (Taiwan) Australia: ASP (Australia)
- Dabblers: MLS (Germany), Indus (India), SESAME (Jordan), SNS (USA), SLS (Thailand), Elettra (Italy), LNLS/SIRIUS (Brazil), UMER (USA)


LOCO (~20, likely more) MML Users + BESSY-II and MLS (Germany), ELSA (Germany), TLS (Taiwan), LNLS (Brazil), RHIC (USA), ASTRID2 (Denmark)

Disclaimer: I don't know everyone that uses the MMLT & LOCO so it's difficult to know the extent of use.

The Matlab Centric Problem

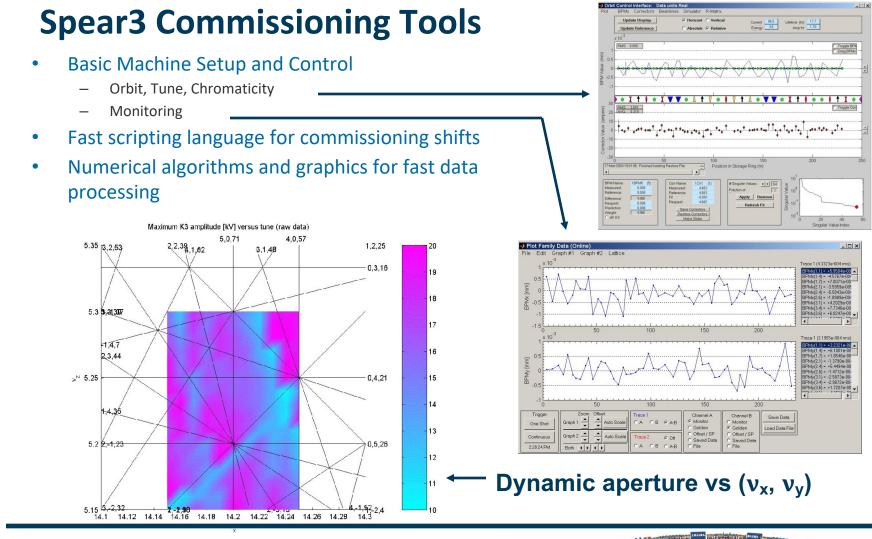
Future?

- There has been very little expansion of the core MML library in the last 10 years.
 - Almost all the expansion in the MML has been in scripting and high level application development at each of the individual accelerator level.
- NSLS-II didn't like that Matlab was such a "thick" client. They wanted their servers to do the bulk of the work and clients like Matlab, Python, Phoebus, ... should be thin clients. Clearly there are many good merits for doing this and I think it a good approach but there are also some negative impacts.
 - I prefer a local model in Matlab over a model server. But it's fine to have both.
 - The code isn't as accessible, readable, changeable to the average physicist.
 - Even in simulation mode, you need to be connected the accelerator control system.
 Running on a laptop on an airplane isn't so easy.
 - Creating an accelerator independent and control system independent server might be a challenge.
 - It will be a challenge to provide all the functionality in the MML on a server and keep up with the weekly demands for new functionality to support physics experimentation and operational changes.

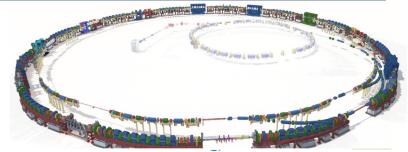
Note: the MML can work in a "thin mode." For instance, measrespmat, getrespmat, getdata, etc. can be redirected to a server.

Conclusion

- Relatively easy to use. Most people start writing useful scripts in a few hours.
- MiddleLayer + LOCO + AT cover many of the high level software concerns for storage ring physics. Hence, not every accelerator has to spend resources coding the same algorithms.
- Thousands of dedicated accelerator hours have been spent testing, improving, debugging, and exercising the Middle Layer software.
- It's a good scripting language for machine shifts or it can be the high level setup and control software for a storage ring.
- Integration of the AT model is good for debugging software without using accelerator time.
- Having machine independence software has fostered collaboration and code sharing between the laboratories.

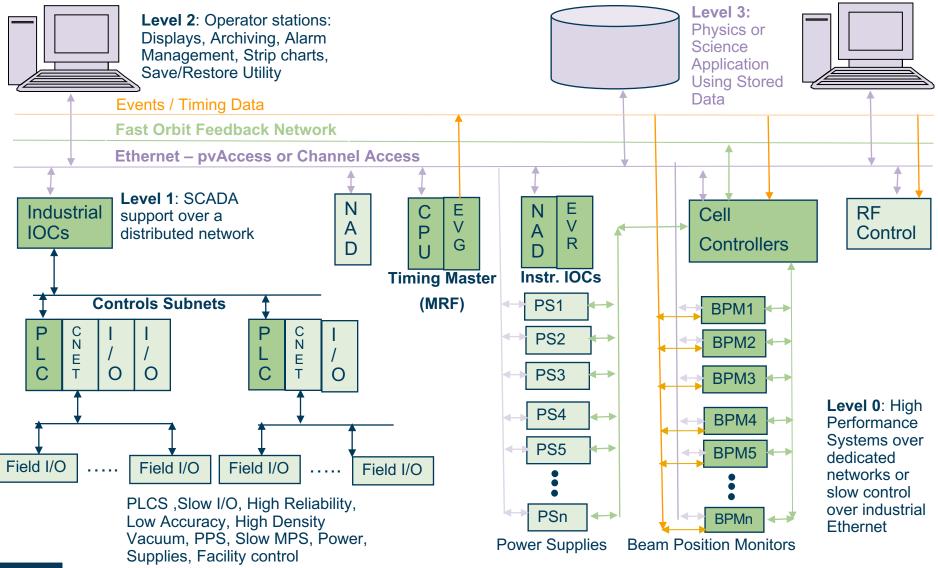


Extra Slides

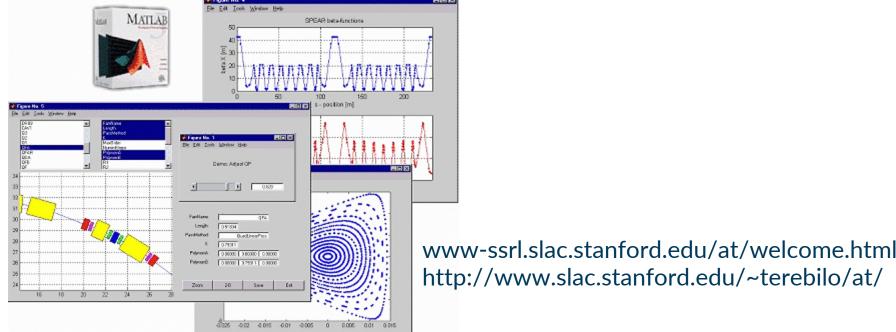



ALS-U

- AR commissioning ~2 years
- SR commissioning ~5 years


ALS Computer Layout

Architecture



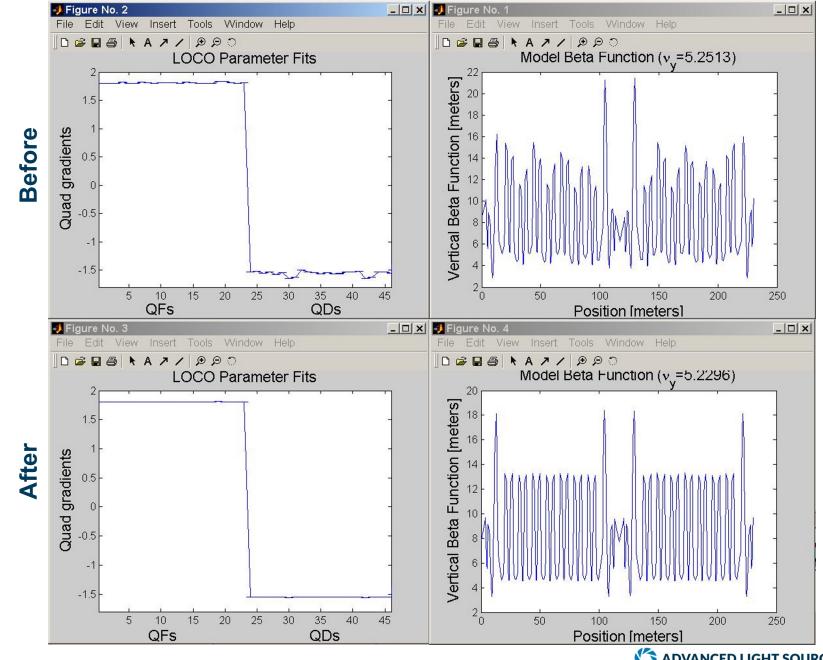
AT – Accelerator Toolbox

Andrei Terebilo (AT) creator, was being maintained by Xiaobiao Huang (SLAC/SSRL) and Boaz Nash (Tech-X). Moved to git hub.

MATLAB ® Toolbox for Particle Accelerator Modeling

Accelerator Toolbox is a collection of tools to model particle accelerators and beam transport lines in MATLAB environment. It is being developed by <u>Accelerator Physics Group</u> at <u>Stanford</u> <u>Synchrotron Radiation Laboratory</u> for the ongoing design and future operation needs of <u>SPEAR3</u> Synchrotron Light Source.

AT – Accelerator Toolbox


New sourceforge project for AT set up by Boaz Nash (Tech-X) <u>https://sourceforge.net/apps/mediawiki/atcollab/index.php?title=Main_Pag</u> <u>e</u>

Main Page This is the AT wiki Contents [hide] 1 Overview navigation 2 Integrators Main Page 3 Bend Conventions Community ports 4 Matlab AT tools . Current events 5 Machine data . Recent change Random page 6 Tests for Integrators = Help 7 Experience, suggestions 8 Projects and Directions search 9 Other info 10 Getting started Go Search 11 Project Logo toolbox Overview . What links here Related changes AT stands for Accelerator Toolbox and is a particle tracker originally developed by Andrei Terebilo for the Matlab environment (see here & for the original SLAC Special pages homepage). The tracker uses Forest and Ruth's fourth order symplectic integrator of and is written in C with an interface to Matlab. Other interfaces may also be used. A Printable version Microsoft Excel interface (called Excel Optics 2) has been developed. A Python interface may also be developed. · Permanent link The main application is Third Generation Synchrotron light sources (see e.g. here). The electrons give off radiation going through either the bends, or the wigglers. This radiation then travels down the beam-lines to be used as a source or probe for various materials. The radiation in the beamline may be tracked with e.g. the code Shadow . One may also compute the properties of the radiation with SRW . As a tracker of charged particles through magnetic fields, other applications may also be considered. The code is kept in version control using Subversion (svn). You can browse the code here de The code can be downloaded with svn co https://atcollab.svn.sourceforge.net/svnroot/atcollab atcollab If you would like to contribute to the code development, or this wiki, you need to have a sourceforge account a (free and quick). Then please contact one of the project admins to be added to the atcollab project Integrators We'd like to document the integrators. An integrator takes the coordinates of an incoming particle and produces the coordinates for the outgoing particle (some distance away if the element has a length). There are also additional parameters to specify the details of the element (such as misalignment, rotation) and properties of the particle (like Energy). The coordinates are $ec{r}=(x,p_x,y,p_y,\delta,ct)$ One should be more careful than this, however. The Hamiltonian, using path length z as an independent variable is given by $H(x, p_x, y, p_y, t, p_t) = -p_z = -\sqrt{p_t^2 - (p_x - eA_x)^2 - (p_y - eA_y)^2 - eA_z}$ For some physics guidance in understanding, one source is the Mad Physics guide d. PTC/MAD-X contains a lot of nice physics. The code is here d.

Most recent updates are on parallelizing AT.

D focusing correction

ADVANCED LIGHT SOURCE

Spear3 Commissioning Team (partial)

