
Matlab Middlelayer at Spear3, ALS,
Soleil and other Light Sources

Greg Portmann (ALS / Spear3)
Jeff Corbett, Xiaobiao Huang, James SaFranek, Jim Sebek, Andrei Terebilo (Spear3)

Dave Robin and Christoph Steier (ALS)
Laurent Nadolski (Soleil)

Eugene Tan (ASP)
and many others

October 4, 2023

• I saw chromaticity measurements
being done in the control room in
Excel.

• There’s no way we’re going to
implement SVD orbit correction,
… in Excel. C or C++ was an option
but Matlab’s active workspace is
ideal for shift work.
– I believe our first study using the original

MML was beam base alignment with Dave
Robin.

I’ve been writing Matlab code for
accelerators since about 1993. Why?

MML Brief History
● Started about 1993 at the ALS to automate physics

experiments (orbit, tune, chromaticity correction,
quadrupole centering, …)

● We started using Matlab code during ALS operations
out of necessity, and we never stopped
� Lack of the people working in high level controls
� The motivation to change working Matlab code is low and

it comes with risk.

● Spear3 commissioning effort (early 2000s)
� Started with the ALS Matlab code and completely rewrote

it to be accelerator independent (as much as we could)
� Andrei Terebilo had written the Matlab tracking code AT
� LOCO was ported from Fortran to Matlab & AT

AT – Accelerator Toolbox
Why did Andrei Chose Matlab?

Andrei Terebilo, ~2001

The Matlab Toolbox Suite for accelerator
physics and commissioning developed in the
2001 – 2004 timeframe for Spear3.
• MiddleLayer + High Level Applications (MML)

1. Link between applications and the control
system (EPICS, Tango, etc.) or simulator

2. Functions to access accelerator data
3. Provide a physics function library

• AT – Accelerator Toolbox for simulations
• LOCO – Linear Optics from Closed Orbits

(Lattice calibration, etc.)

Some of the people … a while back.

High concentration of MML and AT programmers at this ALS/Spear3 offsite in 2007
Including: Andrei Terebilo (AT)

Missing: the CLS control room

Design Plan/Goals
• Accelerator Independent

– Control system independent
• Two main functions to change control systems

– getpvonline, setpvonline
– Minimize the need to know the control system or a channel name.

• Work on EPICS, Tango, OPC, and other older control systems
– AT model independent

• Tracking code independent
– Build on AT. We planned to connect to other modeling code

but it hasn’t happened so far.
• getpvmodel, setpvmodel

• Be flexible on where data comes from
– getdata and getrespmat can branch between Matlab data,

model data, or data from a server.
• Nothing fancy, keep it simple, …

– Clean, readable, commented code
– No objects (just expose the structures)

• Although, mml objects are available
– The target audience was non-professional programmers

Software Interconnection Diagram

High Level Matlab Applications
(scripts and functions)

Matlab to Control
System Interface

(EPICS, Tango, …)

Matlab Middle Layer

Accelerator Toolbox
(AT - Model)

Accelerator
Hardware

Middlelayer Data Flow Diagram

Accelerator
Hardware AT Model

Hardware
Units

(Usual Command
Window Location)

Calibrated
Hardware

Units

Physics Units
(Optional

Command Window
Location)

BPM and Corrector
Coordinate Change

raw2real
real2raw

hw2physics
physics2hw

getpvonline
setpvonline

getpvmodel
setpvmodel

BPM
• Gain (Units scaling)

Correctors
• Gain (amps to rad.)
• Energy Scaling

Lattice Magnets
• Gain (amp to K)
• Energy Scaling
• Hysteresis

RealData = Gain*(RawData - Offset)

BPM
• Gain (LOCO)
• Offset (BBA)

Correctors
• Gain (LOCO)

Lattice Magnets
• Gain (LOCO)

BPM
• Roll, Crunch

Correctors
• Roll
• Correction offset

Lattice Magnets
• Correction offset
• All other known
errors are already in
the AT model.

Data flow for getpv and setpv

Challenges
• The most difficult step was to make it accelerator

independent. But it greatly improved the code.
– Needed to be very flexible on units and conversions

(hw2physics and physics2hw)
– Forces abstraction instead of hardcoding.
– Needed the .MemberOf field to know what the families were.

• X, Y, BPMx, BPMy, BPMz, …
• HCM, HCOR, HC, XCOR, …

– …

• Timing setpoint change
and data taking
– WaitFlags in setpv.

Knowing when the setpoint
change is complete and
when monitors, like orbit
and tune data, are ready to
read.

• Data management

Data, Data, and more Data
• Beam Position Monitors

– Channel names, gains, roll, crunch, offsets, golden, standard
deviations

• Magnets
– Channel names, gains, offsets, roll, setpoint-monitor

tolerance, amp-to-simulator conversions, hysteresis loops,
max/min setpoint

• Response matrices (Orbit, Tune, Chromaticity)
• Lattices (Save and restore)
• Measurement archiving

– Dispersion, tunes, chromaticity, quadrupole centers
– …

• …

Management of data within Matlab is easy.
Sharing data with other applications is not so easy.

MML Setup Data Structures (1)

>> ao = getao;
>> ao.HCM

FamilyName: 'HCM'
MemberOf: {3×1 cell}
DeviceList: [98×2 double]
ElementList: [98×1 double]
Status: [98×1 double]
Position: [98×1 double]
BaseName: {98×1 cell}
DeviceType: {98×1 cell}
CommonNames: [98×11 char]
Monitor: [1×1 struct]
Setpoint: [1×1 struct]
Trim: [1×1 struct]
FF1: [1×1 struct]

FF2: [1×1 struct]
FFMultiplier: [1×1 struct]
Sum: [1×1 struct]
DAC: [1×1 struct]
RampRate: [1×1 struct]
TimeConstant: [1×1 struct]
OnControl: [1×1 struct]
On: [1×1 struct]
Reset: [1×1 struct]
Ready: [1×1 struct]
AT: [1×1 struct]
Gain: [98×1 double]
Roll: [98×1 double]

MML Setup Data Structures (2)

>> ao.HCM.Setpoint
MemberOf: {9×1 cell}
Mode: 'Simulator'
DataType: 'Scalar'
ChannelNames: [98×19 char]
HW2PhysicsFcn: @amp2k
Physics2HWFcn: @k2amp
Units: 'Hardware'
HWUnits: 'Ampere'
PhysicsUnits: 'Radian'
RunFlagFcn: @getrunflagcm
Range: [98×2 double]
Tolerance: [98×1 double]
DeltaRespMat: [98×1 double]

>> ao.HCM.Setpoint.MemberOf
{'PlotFamily' }
{'Save/Restore'}
{'COR' }
{'Horizontal' }
{'HCM' }
{'Magnet' }
{'Setpoint' }
{'measbpmresp' }
{'Archive' }

Typically only one or two people at a facility maintain
the MML setup data structures.

MML Data Structures

>> getpv('HCM', 'Monitor', 'Struct')
Data: [98×1 double]

FamilyName: 'HCM'
Field: 'Monitor'

DeviceList: [98×2 double]
Status: [98×1 double]
Mode: 'Online'
Units: 'Hardware'

UnitsString: 'Ampere’
DataDescriptor: 'Get by FamilyName'

CreatedBy: 'getpv’
DataTime: [98×1 double]

TimeStamp: [2023 10 8 16 55 19.8041]

>> r = getbpmresp('struct');
>> r(1,1)

Data: [122×98 double]
Monitor: [1×1 struct]

Actuator: [1×1 struct]
ActuatorDelta: [98×1 double]

Monitor1: [122×98 double]
Monitor2: [122×98 double]

Units: 'Hardware'
UnitsString: 'mm/Ampere'

GeV: 1.8909
TimeStamp: [2023 10 4 16 22 58.9844]

DCCT: 55.7607
ModulationMethod: 'bipolar’

WaitFlag: -2
ExtraDelay: 0

DataDescriptor: 'Response Matrix'
CreatedBy: 'measrespmat'

OperationalMode: 'Pseudo-Single Bunch (0.18,0.25)'
FileName:

'/home/als/physbase/mmlt/machine/ALS/StorageRi
ngOpsData/PseudoSingleBunch/GoldenBPMResp_L
owEmittance'

Basic Data Structure Response Matrix Data Structure

I. Basic Calling Syntax (the middelayer part)
Naming Convention
Family = Group descriptor (text string)
Field = Subgroup descriptor (text string)
DeviceList = [Sector Element-in-Sector]

Basic Functions
getpv(Family, Field, DeviceList);
setpv(Family, Field, Value, DeviceList);
steppv(Family, Field, Value, DeviceList);
These functions can branch between the model and online.

Examples:
x = getpv('BPMx', 'Monitor', [3 4;5 2]);
h = getpv('HCM', 'Setpoint', [2 1;12 4]);
setpv('QF', 'Setpoint', 81);

Families
Bend magnets – BEND
Quadrupoles – QF, QD, QFA, QDA
Sextupoles – SF, SD
Skew quadrupoles - SQSF, SQSD
Correctors – HCM, VCM
Beam position monitors – BPMx and BPMy
Insertion devices – ID, EPU
Other - RF, DCCT, TUNE, Energy

Fields
Setpoint, Monitor, RampRate, RunFlag, DAC, OnOff,
Reset, Ready, Voltage, Power, Velocity, HallProbe, etc…

ALS Naming Scheme

At the ALS, the channel finder service tags channels using the same
“Accelerator, Family, Field, Device” scheme as in the MML.

Name Server: EPICS Channel Finder

Scripting Example: Orbit Correction in 6 lines

% Get the horizontal response matrix
Rx = getrespmat('BPMx', 'HCM'); % 122x94 matrix at ALS

% Computes the SVD of the response matrix
Ivec = 1:48;
[U, S, V] = svd(Rx, 0);

% Get the vertical orbit
X = getpv('BPMx');

% Find the corrector changes
DeltaAmps = -V(:,Ivec) * S(Ivec,Ivec)^-1 * U(:,Ivec)' * X;

% Changes the corrector strengths
steppv('HCM', 'Setpoint', DeltaAmps);

Add a loop => Slow
Orbit feedback

Controls & Instrumentation
Supported Systems and Devices
• Fast magnets
• Power supplies
• Vacuum systems
• Diagnostic systems

• Beam Position Monitors (BPMs), fast orbit feedback
• Scopes
• Scintillators (fluorescent screens) and CCD cameras
• Photon Beam Position Monitors (PBPMs),
• Beam current (DCCT, ICT)
• Bunch current monitor
• Beam loss monitors
• Vacuum chamber/girder/floor motion monitors
• …

• RF systems
• Machine protection systems (MPS)
• Facilities data (temperatures, …)
• Control room to support operations and physics
• …

19

II. Function Library
There are hundreds of functions for accelerator control
• setorbit – general purpose global orbit correction function
• setorbitbump – general purpose local bump function
• settune – sets the storage ring tune
• setchro – sets the storage ring chromaticity
• measchro – measure the chromaticity
• measdisp – measure the dispersion function
• quadcenter, quadplot – finds the quadrupole center
• physcis2hw – converts between physics and hardware units
• measbpmresp – measure a BPM response matrix
• measlifetime – computes the beam lifetime
• minpv/maxpv – min/max value for family/field
• srcycle – standardizes the storage ring magnets
• scantune – scan in tune space and record the lifetime
• scanaperture – scans the electron beam in the straight sections and monitors lifetime
• finddispquad – finds the setpoint that minimizes the dispersion in the straight

sections.
• rmdisp – adjusts the RF frequency to remove the dispersion component of the orbit by

fitting the orbit to the dispersion orbit
• Etc. (thousands of scripts and functions have been written)

Matlab - LabCA Polling Speed
1. One PV -> 1 kHz polling (4 kHz is about the maximum rate)

x = getpv('BPMx', 'Monitor', [1 1], 0:.001:.2);

2. 120 PVs -> 1 kHz polling is about the maximum but there
is some variation in the sampling time.

x = getpv('BPMx', 'Monitor', [], 0:.001:.2);

Note: these numbers improve every year.

Matlab Waveform Speed in EPICS
BL 3.1 CCD Camera
>> tic; Image = getpv('BL31:image1:ArrayData', 'native', 1038*1390); toc

Elapsed time is 0.08 seconds (12.5 Hz)
1038*1390*16 / 2^20 = 22.0 Mbits (~1.44M points in .08 seconds)

BPM
>> tic; X = getpv('BR2:BPM3:wfr:TBT:X','waveform'); toc;

Elapsed time is 0.114679 seconds. (2.1M points)

MML Applications

High Level Applications in Matlab
• Save/ restore / configuration control
• Orbit correction and slow orbit feedback
• Insertion device focusing compensation
• Quadrupole centering
• Display (plotfamily, mmlviewer)
• Transport line tuning
• CCD cameras
• Energy Ramping
• General scripting language for machine shifts
• LOCO (Response matrix analysis, machine calibration)
• …

-> Many applications can be run and optimized before the
accelerator is build. It’s highly recommended to test orbit
correction, tune correction, quadrupole centering, and LOCO
before finalizing the lattice design.

plotfamily application

See also mmlviewer viewfamily

Chromaticity Measurement

Spear3ALS

Accelerator Independent

Beam-based Alignment

Orbit Correction

Save/Restore

LOCO Optics Analysis
• Calibrate/control optics using orbit response matrix
• Determine quadrupole gradients
• Correct coupling
• Calibrate BPM gains, steering magnets
• Measure local chromaticity and transverse impedance

MATLAB version of LOCO
• Rewritten from FORTRAN
• Linked to AT simulator
• Compatible with the MMLT

• Easy to measure LOCO
data with the MML

• measlocodata
• Relatively easy to import

response matrix data
• buildlocoinput

• Relatively easy to apply
result back to the
accelerator (setlocodata).

Accelerator Specific Applications

There are many more accelerator specific applications
than accelerator independent applications.

However, these applications are typically control system
independent so they are often relatively easy to port to a
different facility.

Injection Charge Monitor at ALS

SR Injection Orbit and Tunes

Bunch Current and Phase
A Matlab application post-process the
data from an FPGA based sampling
scope and provides bunch current
and phase information 24/7 in the
control room.

Fast Orbit Feedback Setup and Monitorting

Beam Dump Orbit Capture

CCD Cameras

Scopes

Spear3 - Lifetime vs. tunes

νx

ν y

5.15

5.35Spear3 Measurement
● Resonant line:

� νx – νy = 9

● Operating tunes
(5.19, 6.23)

● Data gathered
automatically on
owl shift.

Storage Ring Control & Topoff
SRControl
• Setups up the

lattice, standardizes
(cycles) the magnets

• Slow orbit feedback
• ID tune correction
• Tune feedback

Note: 150 to 200
magnets change when
an ID moves.

Topoff
• Controls the fill

pattern
• Coordinates

injector tuning
during user
operations

• Computes the
lifetime and
transfer
efficiencies.

MML2EDM
EDM screen generated from with Matlab
■ EDM applications can be tedious to build.
■ MML has channel names arranged by families.
■ Adding/subtracting a device is easy and less error prone.

Recently Pheobus screen generation program was written in Python,
but I haven’t written the a MML2Pheobus function yet. Since Matlab can call
Python functions this should be relatively straightforward to do.

Who Uses the MML Software
MML (~15 labs, maybe more, maybe less)
USA: ALS (Berkeley), Spear3 (Stanford), Duke FEL,

NSLS-II (Brookhaven)
Canada: CLS
Europe: Soleil (France), Solaris (Poland), DIAMOND (England),

ALBA (Spain), ELSA (Germany), MaxIV (Sweden)
Asia: PLS2 (Korea), SSRF (Shanghai), TLS/PLS (Taiwan)
Australia: ASP (Australia)
Dabblers: MLS (Germany), Indus (India), SESAME (Jordan), SNS

(USA), SLS (Thailand), Elettra (Italy), LNLS/SIRIUS (Brazil),
UMER (USA)

LOCO (~20, likely more)
MML Users + BESSY–II and MLS (Germany), ELSA (Germany),

TLS (Taiwan), LNLS (Brazil), RHIC (USA), ASTRID2 (Denmark)

Disclaimer: I don’t know everyone that uses the MMLT & LOCO
so it’s difficult to know the extent of use.

The Matlab Centric Problem

We don’t have a
standard way to
share data at the ALS
• Databases
• Servers
• Files

MML/Matla
b• Presently data generated

in Matlab is saved in a
Matlab formatted files.

• Most of the work is done
in two functions
• getdata
• getrespmat
Ie. easy to change

Hardware
• Database
• ALS Filer

•EPICS-CA
•Tango
•TCP/IP
•…

Bounce
data off a
database

Other Applications

Future?
• There has been very little expansion of the core MML library in the last

10 years.
– Almost all the expansion in the MML has been in scripting and high level application

development at each of the individual accelerator level.

• NSLS-II didn’t like that Matlab was such a “thick” client. They wanted
their servers to do the bulk of the work and clients like Matlab, Python,
Phoebus, … should be thin clients. Clearly there are many good merits
for doing this and I think it a good approach but there are also some
negative impacts.
– I prefer a local model in Matlab over a model server. But it’s fine to have both.
– The code isn’t as accessible, readable, changeable to the average physicist.
– Even in simulation mode, you need to be connected the accelerator control system.

Running on a laptop on an airplane isn’t so easy.
– Creating an accelerator independent and control system independent server might be

a challenge.
– It will be a challenge to provide all the functionality in the MML on a server and keep

up with the weekly demands for new functionality to support physics experimentation
and operational changes.

– …
Note: the MML can work in a “thin mode.” For instance, measrespmat, getrespmat,
getdata, etc. can be redirected to a server.

Conclusion
● Relatively easy to use. Most people start writing useful

scripts in a few hours.
● MiddleLayer + LOCO + AT cover many of the high level

software concerns for storage ring physics. Hence, not
every accelerator has to spend resources coding the same
algorithms.

● Thousands of dedicated accelerator hours have been spent
testing, improving, debugging, and exercising the Middle
Layer software.

● It’s a good scripting language for machine shifts or it can be
the high level setup and control software for a storage ring.

● Integration of the AT model is good for debugging software
without using accelerator time.

● Having machine independence software has fostered
collaboration and code sharing between the laboratories.

Extra Slides

Spear3 Commissioning Tools
• Basic Machine Setup and Control

– Orbit, Tune, Chromaticity
– Monitoring

• Fast scripting language for commissioning shifts
• Numerical algorithms and graphics for fast data

processing

Dynamic aperture vs (νx, νy)

ALS-U
• AR commissioning ~2 years
• SR commissioning ~5 years

ALS Computer Layout

Console
Computers

(Linux and Windows)
• Matlab
• Phoebus
• EDM

Application Servers
(Linux)

• Matlab
• EPICS Applications

Etherne
t

EPICS IOCs

Fast Orbit Feedback Network
Ethernet – pvAccess or Channel Access

Events / Timing Data

P
L
C

C
N
E
T

I
/
O

Field I/O Field I/O…..

Controls Subnets

P
L
C

C
N
E
T

Field I/O Field I/O…..

PLCS ,Slow I/O, High Reliability,
Low Accuracy, High Density
Vacuum, PPS, Slow MPS, Power,
Supplies, Facility control

Industrial
IOCs

I
/
O

Level 2: Operator stations:
Displays, Archiving, Alarm
Management, Strip charts,
Save/Restore Utility

C
P
U

E
V
G

Timing Master
(MRF) PS1

PS2

PS3

PS4

PS5

PSn

Power Supplies

Cell
Controllers

BPM1

BPM2

BPM3

BPM4

BPM5

BPMn

RF
Control

Beam Position Monitors

Level 3:
Physics or
Science
Application
Using Stored
Data

Level 1: SCADA
support over a
distributed network

Level 0: High
Performance
Systems over
dedicated
networks or
slow control
over industrial
Ethernet

I
/
O

Architecture

N
A
D

E
V
R

Instr. IOCs

N
A
D

AT – Accelerator Toolbox

MATLAB ® Toolbox for Particle Accelerator Modeling
Accelerator Toolbox is a collection of tools to model particle accelerators and beam transport

lines in MATLAB environment. It is being developed by Accelerator Physics Group at Stanford
Synchrotron Radiation Laboratory for the ongoing design and future operation needs of SPEAR3

Synchrotron Light Source.

Andrei Terebilo (AT) creator, was being maintained by Xiaobiao Huang
(SLAC/SSRL) and Boaz Nash (Tech-X). Moved to git hub.

www-ssrl.slac.stanford.edu/at/welcome.html
http://www.slac.stanford.edu/~terebilo/at/

http://www-ssrl.slac.stanford.edu/accphy/accphy.html
http://ssrl.slac.stanford.edu/
http://ssrl.slac.stanford.edu/
http://www-ssrl.slac.stanford.edu/spear3/SPEAR3_main_page.htm

AT – Accelerator Toolbox

New sourceforge project for AT set up by Boaz Nash (Tech-X)
https://sourceforge.net/apps/mediawiki/atcollab/index.php?title=Main_Pag
e

Most recent updates are on parallelizing AT.

https://sourceforge.net/apps/mediawiki/atcollab/index.php?title=Main_Page
https://sourceforge.net/apps/mediawiki/atcollab/index.php?title=Main_Page

ID
 fo

cu
si

ng
 c

or
re

ct
io

n
B

ef
or

e
A

fte
r

Spear3 Commissioning Team
(partial)

