

Superconducting RF Transverse Deflecting (a.k.a. Crab) Cavities for Short X-ray Pulses at Elettra 2.0

Simone Di Mitri

Elettra Sincrotrone Trieste & University of Trieste

HarmonLIP 2024, by LEAPS & ESRF, Grenoble, March 2024

simone.dimitri@elettra.eu

Acknowledgements & References

- Core team @ Elettra-ST: A. Bianco (radiation), A. Fabris (RF & chair of TDC panel), K. Manukyan (beam physics), M. Modica (cryo & SC), N. Shafqat (RF design).
- Collaborators: A. Zholents @ANL, X. Huang @SLAC (beam physics), A. Lunin, T. Khabiboulline, V. Yakovlev @FermiLab, R. Calaga, F. Gerigk, A. Grudiev @CERN (RF design).
- Zholents, A., Heimann, P., Zolotorev, M. & Byrd, J., Generation of subpicosecond X-ray pulses using RF orbit deflection, NIM A 425 (1999), 385–389.
- Zholents, A., A new possibility for production of sub-picosecond x-ray pulses using a time dependent radio frequency orbit deflection, NIM A 798 (2015) 111–116.
- X. Huang, T. Rabedeau, J. Safranek, Generation of picosecond electron bunches in storage rings, J. Synch. Rad. 21 (2014) 961–967.
- X. Huang, Coupled beam motion in a storage ring with crab cavities, PRAB19, 024001 (2016).
- X. Huang, B. Hettel, T. Rabedeau, J. Safranek, K. Tian, K. P. Wootton and A. Zholents, Beam dynamics issues for the two-frequency crab cavity short pulse scheme, PRAB 22, 090703 (2019).
- X. Huang et al., Obtaining picosecond x-ray pulses from fourth generation synchrotron light sources, PRAB 26, 120701 (2023).

HarmonLIP 2024, by LEAPS & ESRF, Grenoble, March 2024

Elettra Sincrotrone Trieste X 100-1000							
Parameter (1-10 keV)	Elettra 2.0		FERMI	Units			
Spectral range	0.02 - 50		0.01 – 0.7	keV			
Rep. rate	1 – 400		0.05	MHz			
Pulse duration, rms	30		0.005 – 0.1	ps			
Flux at sample, ave	$10^6 - 10^{13}$		10 ⁹ – 10 ¹³	ph/sec			
Spectral resolution	10 ⁻⁵ – 10 ⁻⁴		10 ⁻⁴ – 10 ⁻³ (w/o mono)				
Polarization	all		all				
Coherence	Hor. < 0.5 keV		full				
# Beamlines / Run	31		< 2				

Working principle

HarmonLIP 2024, by LEAPS & ESRF, Grenoble, March 2024

Deflecting voltages

- Physical restrictions during injection (losses)
- ✓ Dynamic restrictions when stored (quantum lifetime)

$$V_{1,2} < y_{min} \frac{E}{e} \frac{\sin(\pi v_y)}{\beta_y} = \mathbf{1.36} \, \mathbf{MV}$$

$$\tau_{q} = \frac{1}{2} \tau_{y} \frac{e^{\xi}}{\xi} > 100 \ hrs, \quad \xi = \frac{A_{y}^{2}}{2\Sigma_{y}^{2}(V_{1,2})}$$
$$V_{1,2} \le \frac{A_{y}}{6.5k_{1}\sigma_{z}} \frac{E}{e} \frac{\sin(\pi v_{y})}{\beta_{y}} = 1.25 \ MV$$

Yet, additional constraints by: injection transients, residual kick to regular bunches, RF stability...

Equilibrium of the tilted bunch

Elettra Sincrotrone Trieste

> 80 kHz detuning ensures lengthening factor between 2.7 and 3.0 of regular bunches, and no bunch splitting.

Off-axis longitudinal focusing by the CCs shortens the tilted bunch (Panofsky-Wenzel th., in agreement to X.Huang's PRAB 2016).

7

Ref. A. Bianco & B. Diviacco

Minimum pulse duration

Minimum light pulse duration:

Beamline optics zoo at Elettra 2.0:

Performance

0.80MV@3GHz, 0.75MV@3.25GHz,

Ref. A. Bianco

UNI EN ISO 9001:2018 UNI ISO 45001:2018

Diffraction limit

HarmonLIP 2024, by LEAPS & ESRF, Grenoble, March 2024

From ring to sample: elegant + Spectra (benchmarked with ShadOUI) @ 0.8 keV

Project evaluation

UNI EN ISO 9001:2018 UNI ISO 45001:2018

QMiR design, FNAL-Elettra-CERN

Best cancellation of residual kicks for standard bunches

Quasi-waveguide Multicell Resonator (QMiR) designed for 2.815 GHz frequency for APS-U@ANL. Cavity successfully tested @2K in a vertical cryostat, demonstrated a 2.6 MV transverse voltage.

A. Lunin, T. Khabiboulline, V. Yakovlev, "A White Paper on Design and Fabrication of SRF Deflecting Cavities for Elettra 2.0", FNAL

- Optimization of the FermiLab/ANL prototype to 3.0 GHz and 3.25 GHz, larger apertures, lower HOMs, and weaker multipoles.
- □ RF source input power < 500 W per cavity.
- 3 pure-Nb cavities @ 4,5 K (extension of the Elettra 3HC cryogenic system).

Cryogenic system

PT450 Cryomech cryo-coolers: 4 cold heads @ 3.4 K

13

Courtesy N. Shafqat

Geometry and parameters

100 mm			m l	00 mm
	Studiard		cav. 1 @ 3.0 GHz	cav.2 @ 3.25 GHz
		WG_I	250 mm	250 mm
	← 72.136 mm →	Stub_dist	13.90 mm	13.90 mm
		WG_d	39.19 mm	36.79 mm
		BP_d	50 mm	50 mm
°. da				
	Stub_dist		Stub_dis	r r r

	Vers	Units	
	cav.1 @ 3.0 GHz	cav.2 @ 3.25 GHz	
R/Qy	656.744	446.14	Ω
E _{peak}	23.5	44.59	MV/m
B _{peak}	45	91.93	mT
Dy variation	4.62%	5.07%	
G factor	109.86	109.14	

Impedance budget

Design Criterion									
Available space = 1.0 m		Shunt impedances HOMs below cutoff			Short range wakefields				
	f [GHz]	D.V. [MV]	% change in D.V. @ 5.0 mm offset	Vertical	<1.5	(MΩ/m)	Loss factor	4	(V/pC)
Cav. 1	f1: 3.0	V1: 1.5	≤10 %	Horizontal	<4.0	(MΩ/m)	Horizontal kick factor	1.3	(V/pC/mm)
Cav. 2	f2: 3.25	V2: 1.2	≤10 %	Longitudinal	<0.4	(MΩ*GHz)	Vertical kick factor	1.3	(V/pC/mm)

HarmonLIP 2024, by LEAPS & ESRF, Grenoble, March 2024

simone.dimitri@elettra.eu

Ref. N. Shafqat & K. Manukyan

UNLEN ISO 9001:201

Multipolar field components

TDC stubs design

Our preliminary design of the TDC system is largely transparent to the stability and lifetime of the regular bunches

field transverse uniformity

DA and MA of regular bunches w/ TDCs

HarmonLIP 2024, by LEAPS & ESRF, Grenoble, March 2024

Static ε_v^{reg} -growth (drifts)

Dynamic ε_{y}^{reg} -growth (shot-to-shot)

Specification of RF stability under study. Some R&D of D-LLRF expected.

Off-axis injection

Conclusions

- The installation of TDCs at Elettra 2.0 aims to provide extreme ultra-violet and x-ray pulses of 1–5 ps FWHM duration from IDs, with maximum repetition rate of 1 MHz and relative flux at the sample in the range 1–10% of the standard single bunch emission.
- Two SC RF cavities resonant at 3 & 3.25 GHz. Impact on longitudinal and transverse dynamics evaluated both for standard and tilted bunches. Design studies and prototypes also ongoing for ILC (see A.Lunin SRF'23).
- TDCs are *not* in the baseline of Elettra 2.0, hence not funded yet. Still, supported by management, scientific community, SAC and MAC as they would make Elettra 2.0 unique worldwide.

19

Thank you for your kind attention

Comments and questions are welcome

HarmonLIP 2024, by LEAPS & ESRF, Grenoble, March 2024

Scientific motivations to timing mode

□ <u>3rd gen. SRLS:</u> high average brilliance, moderate peak intensity

- Track aerosol in free-flight, non-equilibrium states
- Map reversible dynamics of molecular systems
- Photo-electron spectroscopy
- Probe charge transfer dynamics
- Image orbital, spin, and lattice degree of freedom
- EXAFS Large wavelength tuneability

□ <u>4th gen. SRLS:</u> high degree of transverse coherence in x-rays

- improves lateral resolution
- preserves high energy resolution (monochromators)
- reduces the integrated time of measurements

- avoid sample **damage** (burning, ablation) and **space charge**
 - nano- to pico-
 - second time scale
 - at nanometer size

21

R. Costantini et al., J. Electr. Spectr. Rel. Phen. 254 (2022)

Elettra Sincrotrone Trieste

UNI EN ISO 9001:2015 UNI ISO 45001:2018

UNI EN ISO 9001:201 UNI ISO 45001:2018

Elettra 2.0 – Options for timing mode

		Low current	Hybrid	Crab Cavities	Laser-slicing
Stored Current	mA	0.25×400 bn.	2 + 400	2 + 400	2 + 400
SP Duration, fwhm	ps	9	40	1	0.5
SP Repetition Rate	MHz	500	1.157	1.157	0.01 - 0.1
Flux(SP)		1	1	1	1
Flux(400mA)		2000	200	10000	10 ⁸

• Total stored current in *low current* mode is 100 mA

