HarmonLIP, 19 March 2024, ESRF

# Status and development of harmonic-cavity project at KEK

Naoto Yamamoto,

Shogo Sakanaka, Daichi Naito, Takeshi Takahashi (KEK)

25 minutes, including questions



### Future Light Source at KEK

- PF-HLS (Green field project at KEK Tsukuba campus, Japan)
  - 2.5 / 5.0 GeV energy switchable ring with pulsed SC injector
    - To obtain wide energy-range photons at one BL/measurement system
    - Two photon beams having different energy/size,,, are used simultaneously.
  - Bunch lengthening system for storage beams is needed (BLF > 3,0)
  - RF system for PF-HLS
    - FC: SKEKB Damping Ring 500MHz cavity
    - HC: TMo20 1.5 GHz cavity

|                                        |                 | _          |
|----------------------------------------|-----------------|------------|
| Table: Tentative PF-HLS Ring Parameter |                 |            |
| Energy [GeV]                           | 2.5             | 5.0        |
| Circumference [m]                      | 749.5           |            |
| Lattice                                | Double DDBA/8BA | (modified) |
| Stored current [mA]                    | 500             | 200        |
| Natural emittance[nmrad]               | 0.208           | 0.832      |



### **Candidate of Fundamental Cavity for PF-HLS**

#### **SKEKB DR Cavity** \*SKEKB DR: SuperKEKB Damping Ring

Developed by Prof. Abe (KEK) based on the HOM damped structure of KEK ARES cavity, which used for the KEKB Main Ring.

- Strong HOM-damped performance
- $\succ$  fr = 508.9 MHz, R/Q = 75 Ω, Qo = 30,000, Design Vc ~ 0.8 MV



### **Candidate of Harmonic Cavity for PF-HLS**

\* T. Yamaguchi et al., "Design and low-power measurement of 1.5 GHz TM020-type harmonic cavity for KEK future synchrotron light source," NIM A, 1053 (2023) 168362.



### Low power model study of 1.5GHz-TMo20 cavity

- As a result of investigations, we found that maintaining the axial symmetry of the cavity is essential for minimizing the leakage power of the accelerating mode into the coaxial slots.
- To this end, we have symmetrically arranged three frequency tuners, and designed an input coupler loop that produces only a small perturbation on the accelerating mode.





### **Development of a broadband Kicker cavity**

The use of a kicker cavity with a 3dB bandwidth of about 5 MHz, instead of FC & HC, is one solution to improve the TBL compensation performance.

#### Schematic & Parameters of the designed cavity Fig. & table from N. Naito et al, IPAC2023, WEPA119



Table 1: The parameters of the kicker cavity

| Parameter            | Value                  |  |
|----------------------|------------------------|--|
| Resonant frequency   | 1.500 06 GHz           |  |
| R/Q                  | 60.38 <b>Ω</b>         |  |
| $Q_0$                | 17937                  |  |
| $Q_L$                | 292.41                 |  |
| Synchronous phase    | 0 degree               |  |
| Generator voltage    | 53 kV                  |  |
| Cavity voltage       | 44.2 kV                |  |
| Generator power      | 40.4 kW                |  |
| Power loss in cavity | 2.59 kW                |  |
| Reflecting power     | 15.7 kW                |  |
| Max power density    | 21.7 W/cm <sup>2</sup> |  |
| Absorber loss        | 3.38 %                 |  |

3dB-bandwidth : 5.1 MHz

### **Development of a broadband Kicker cavity**

The use of a kicker cavity with a 3dB bandwidth of about 5 MHz, instead of FC & HC, is one solution to improve the TBL compensation performance.

Schematic & Parameters of the designed cavity Fig. & table from N. Naito et al, IPAC2023, WEPA119





Figure 2: Calculated longitudinal coupling impedances with and without the SiC absorbers.



Figure 3: Calculated transverse coupling impedances with and without the SiC absorbers.

### Development of Integrated Bunch Phase Monitor (iBPhM)

• To realize adaptive feedforward for TBL compensation, a LLRF control system with integrated bunch phase monitor is being developed and tested at KEK-PF; D. Naito et al., PASJ2021, THOA01.

Integraged Bunch Phase Monitor (iBPhM)

Configuration of KEK-PF Digital LLRF system

- μTCA.4 technology
- Non-IQ Direct Sampling method
- Sampling frequency = 307.75 MHz, F<sub>rf</sub> x 8/13
- Synchronized to Revolution clock (1.6MHz, PF)
- BPhM Data rate = ~ 1kHz (average 100-turn data)







The IQ sampling is performed every 13 bunches, and 24 samples are obtained during one revolution period. \*KEK-PF: Harmonic = 312 , RF frequency = 500.1 MHz

The LLRF system of PF-ring was already replaced to this new digital system in 2023.

### Preliminary result of DLLRF system and iBPhM at KEK-PF

• Digital low level RF system

\*Courtesy of Daichi Naito

- Successful stable operation from Nov. 2023
  - Amplitude : < 0.05 %, Phase : < 0.05 deg at 450mA (250 bunches 62 gaps)
- Integrated bunch phase monitor is tested at Hybrid filling mode w/o. HC







### <u>Summary</u>

- At KEK, a bunch lengthening system; 500MHz SKEKB DR-type FCs, 1.5GHz active TM020 HCs with a TBL compensation system, is being considered.
- For the TBL compensation, a DLLRF-integrated bunch phase monitor and a broadband kicker cavity is being developed.
- Issues for SKEKB DR cavity,

 $\geq$  Resonant frequency scaling from 508 to 500 MHz is needed.

- Detailed analysis of the HOM damped performance is underway
- Issues for TMo20 cavity and Kicker cavity,

Design & low-power-model tests for a TMo20 HC and a broadband kicker cavity are almost done. -> High power Test ?



## Thank you for your attention!



