
Deployment strategy of Beamline and Experiment 
Control (BEC) components across development and 
production environments 

GitLab
• On-premise internal GitLab instance https://git.psi.ch with access to

local GitLab runners
• Beamline managers with write access (via GitLab Web IDE or local

git repositories) to their respective git repository with BEC
deployment configuration files

• GitLab Pipelines are read-only through a reconfigured “CI/CD
configuration file”pointing to an external repository

BEC deployment configuration
• A simple user interface with declarative yaml files
• The configuration is defined on a per-host basis and specifies

versions of BEC components and beamline plugins to be installed in
each deployment

GitLab Runner and CI/CD pipelines
• GitLab Runner is installed and configured on an ansible control node
• Can be triggered by a git push event or from GitLab web interface
• Pipeline customization for manual pipeline runs, e.g., to limit

execution to a list of hostnames for only a specific service
redeployment, and/or partial service redeployment

• GitLab Runner executes a CI/CD pipeline that, in-turn, runs an
Ansible playbook

• The setup is similar between the development and production
environments, differing only in the Ansible control nodes and the set
of defined hosts

Ansible
• Execution of a playbook with imported psi.bec and psi.bec_console

ansible roles
• An access to defined BEC servers and consoles is secured via ssh

keys
• A straightforward scaling to other service deployments by including

additional ansible roles in the playbook of a specific beamline

Virtual machines
• Procured with VMWare and configured with Puppet
• Run Red Hat Enterprise Linux 8 (RHEL8)
• Firewalled within a beamline subnetwork
• Monitoring with Icinga2

BEC
The Beamline and Experiment Control (BEC) is a new python-based
control system for experiments that targets the Swiss Light Source
upgrade (SLS 2.0) at Paul Scherrer Institute.
• https://bec.readthedocs.io/en/latest/
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Configuration files with 
parameters for BEC deployment

Manual pipeline trigger 
or git push event

Provides:
• Source code of BEC components 

installed in editable/developer mode
• Beamline-specific plugins
• Corresponding python virtual 

environment
• Integration with remote services, like 

Elasticsearch and SciBec (in progress)

We present a deployment strategy for BEC components and dependencies, leveraging on-premise GitLab pipelines, runners, and Ansible
roles/playbooks. Combing GitLab’s continuous integration/continuous deployment (CI/CD) automation with Ansible capabilities, we expect
Beamline and Experiment Control (BEC) ecosystem to achieve a scalable deployment mechanism across all SLS 2.0 beamlines, facilitating
adaptation to evolving requirements and ensuring optimal user configuration interface.
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