
Deployment strategy of Beamline and Experiment 
Control (BEC) components across development and 
production environments 

GitLab
• On-premise internal GitLab instance https://git.psi.ch with access to

local GitLab runners
• Beamline managers with write access (via GitLab Web IDE or local

git repositories) to their respective git repository with BEC
deployment configuration files

• GitLab Pipelines are read-only through a reconfigured “CI/CD
configuration file”pointing to an external repository

BEC deployment configuration
• A simple user interface with declarative yaml files
• The configuration is defined on a per-host basis and specifies

versions of BEC components and beamline plugins to be installed in
each deployment

GitLab Runner and CI/CD pipelines
• GitLab Runner is installed and configured on an ansible control node
• Can be triggered by a git push event or from GitLab web interface
• Pipeline customization for manual pipeline runs, e.g., to limit

execution to a list of hostnames for only a specific service
redeployment, and/or partial service redeployment

• GitLab Runner executes a CI/CD pipeline that, in-turn, runs an
Ansible playbook

• The setup is similar between the development and production
environments, differing only in the Ansible control nodes and the set
of defined hosts

Ansible
• Execution of a playbook with imported psi.bec and psi.bec_console

ansible roles
• An access to defined BEC servers and consoles is secured via ssh

keys
• A straightforward scaling to other service deployments by including

additional ansible roles in the playbook of a specific beamline

Virtual machines
• Procured with VMWare and configured with Puppet
• Run Red Hat Enterprise Linux 8 (RHEL8)
• Firewalled within a beamline subnetwork
• Monitoring with Icinga2

BEC
The Beamline and Experiment Control (BEC) is a new python-based
control system for experiments that targets the Swiss Light Source
upgrade (SLS 2.0) at Paul Scherrer Institute.
• https://bec.readthedocs.io/en/latest/

1Data Processing Development and Consulting, Science IT Infrastructure and Services, Paul Scherrer Institute
2Data Analysis and Research Infrastructure, Science IT Infrastructure and Services, Paul Scherrer Institute
3Experiment IT Development and Operations, Science IT Infrastructure and Services, Paul Scherrer Institute
4Core Linux Research Services, Science IT Infrastructure and Services, Paul Scherrer Institute

Ivan Usov1 , Borys Sharapov2 , Klaus Wakonig3 , Leonardo Sala2 , Simon Ebner4

Configuration files with 
parameters for BEC deployment

Manual pipeline trigger 
or git push event

Provides:
• Source code of BEC components 

installed in editable/developer mode
• Beamline-specific plugins
• Corresponding python virtual 

environment
• Integration with remote services, like 

Elasticsearch and SciBec (in progress)

We present a deployment strategy for BEC components and dependencies, leveraging on-premise GitLab pipelines, runners, and Ansible
roles/playbooks. Combing GitLab’s continuous integration/continuous deployment (CI/CD) automation with Ansible capabilities, we expect
Beamline and Experiment Control (BEC) ecosystem to achieve a scalable deployment mechanism across all SLS 2.0 beamlines, facilitating
adaptation to evolving requirements and ensuring optimal user configuration interface.

Executes CI/CD 
pipeline with 

ansible-playbook

Beamline staff 
or admins

Ansible control node

BEC virtual machine

Physical or 
virtual console

GitLab Runner

Runs playbook 
with BEC roles

Deploys
Beamline staff or 

users interact with
BEC IPython and 

BEC Widgets

Edit

https://git.psi.ch/
https://bec.readthedocs.io/en/latest/

	Slide 1: Deployment strategy of Beamline and Experiment Control (BEC) components across development and production environments 

