Devices BEC Widgets

D
- 9 A . . ' P P P D P .
D @ > @
()
ADDE ° DLLE s A LIS 0 DC ANAFE s s 0 0
enter fa c OMp O c0ory and Data, Ps 2rre e, F 0 0 ASSE 0 € 2riano
- - .A a)lfa ' - -'. o aya .. aYdda - ...
(J (L J
onter tor Photao s 2. P& orre s oriang

What is the challenge? What is BEC? . g
16 different beamline with mostly similar devices, yet different requirements BEC is a Beamline Experiment Control system ‘
with a service-oriented architecture for orchestrating

and expectations during operation.

and steering the experiment at research facilities.

_ ) Interoperability as key requirement:
BEC IPython BEC Live . . .
m Electronic logbook, archiving
J
Pipeline

How do we avoid hard-coding beamline specific device logic in scans?

=
0 0
(7/]
=§
D e
m £

solution & data processing pipelines.

Ophyd Devices

Unified interface regardless of the underlying control
layer and device type.

~

Device Server “ “ SciHub
connector
Ophyd abstraction ‘

Extensive support of EPICS devices through ophyd.

BEC Server

-

Dedicated database to store and
query scan metadata for future usage.

layer (Bluesky) Redis

Non-EPICS devices (i.e. RESI, ZMQ or TCP
communication) are integrated with the same

abstract interface.

' Scan Bundiler m

BEC events REDIS MessageEndpoints BECMessages

y y

. RedisConnector:

scan_status(scan_id=...) <« ScanStatusMessage(content, metadata)

wrapper around redis-py
. M E ints: .
V;:;igip‘;ﬂ;t?;:: file_event(name-=...) —— FileMessage (content, metadata)
lll. BECMessage: device_read(device=...) —— DeviceMessage(content, metadata)
pydantic models RedisConnector
Scan Hierarchy in BEC Bootstrap Approach
- Emit scaninfo viaScanStatusMessage
- unstage - unstage

- Inform devices to prepare for the scan
npr;eat;zii:ﬁ;e" o
- Execution of time critical actions Detectors. Detectore.
- EigeraM - EigerOM
- Pilatus300k I'm done - Pilatus300k

- FalconX1 - FalconX1
- MCS - MCS

Scan loop

Two type of scans: step and fly.
Upon stage, trigger, complete, etc.
beamline-specific actions are
executed on the devices.

Detector
If necessary, revert/remove scan-specific logic control unit

Temperature
Close the scan, emit event that scan is done controller

- Report on data acquisition, success or failure Devices Custom Prepare Actions

def on_stage(self):

self.exp_time.set(self.scaninfo.exp_time)

Trigger
. def on_trigger(self):
device |
: if self.scaninfo.scan_type == 'step':
CO“C[US'O“ self.trigger_pv.set(1)
. . . elif self.scaninfo.scan_type == 'fly':
Unified interface for all devices Motor pass

controller

Disentangle device logic from scan logic

Flexible thanks to BEC’s event system

All beamlines can share the scans despite different hardware or triggering schemes.



	Slide 1: The BEC Scanning Approach – Devices Get Ready!

