
High-performance coherent X-ray imaging

data analysis using PyNX

Vincent Favre-Nicolin
Algorithms & scientific Data Analysis group

COHERENT X-RAY IMAGING @ESRF

Propagation distance

Near Field

Far Field

• 10-100x more coherent flux since 2020

• Need for faster, more efficient data analysis

• Many techniques (near and far field, small angle and Bragg, 2/3D, tomo,..)

NOBUGS 2024 - Vincent Favre-Nicolin | 25/09/2024

COHERENT X-RAY IMAGING: ALGORITHMS ?

Propagation distance

Object

The Phase problem

• Only the intensity is measured

• Complex algorithms required to

reconstruct the object

• Iterative processes are used to
yield the highest resolution

NOBUGS 2024 - Vincent Favre-Nicolin | 25/09/2024

COHERENT DIFFRACTION IMAGING: THE PHASE PROBLEM

NOBUGS 2024 - Vincent Favre-Nicolin | 25/09/2024

random phases
i

𝐴𝑜𝑏𝑠 𝑘

𝐹𝑇−1

𝜌𝜌

𝐴𝑐𝑎𝑙𝑐 𝑘

𝐹𝑇

𝜑𝑐𝑎𝑙𝑐

Density modification:

⚫ Positivity (*)

⚫ Finite support

𝐼𝑜𝑏𝑠

2D pattern 3D pattern

Rotate

sample

3D object

COHERENT IMAGING: OPERATORS & GPU-FRIENDLY DATA

All operations on coherent wavefronts can be described as

mathematical operators:

Wz=1.2m = P(dz=1.2) * Wz=0

Near field propagation

• Coherent imaging algorithms all work on large arrays (10^5-10^9 pixels/voxels)

• => massively parallel computing using GPUs can be used

• GPUs can read/write arrays at a speed of >500 GBytes/s

• Need optimised software: PyNX@ESRF

NOBUGS 2024 - Vincent Favre-Nicolin | 25/09/2024

COHERENT IMAGING: OPERATORS

Marchesini, S. ‘A unified evaluation of iterative

projection algorithms for phase retrieval’.
Review of Scientific Instruments 78 (2007), 011301

Similar for ptycho:
Marchesini et al, Inverse Problems 29 (2013), 115009

Pm:
• Fourier transform the object
• Impose magnitude in Fourier space

from observed intensity
• Back-Fourier Transform

Ps
• Replace density by zero outside of

support

NOBUGS 2024 - Vincent Favre-Nicolin | 25/09/2024

PYNX CDI OPERATORS (PYTHON API)

NOBUGS 2024 - Vincent Favre-Nicolin | 25/09/2024

All operations are executed on the GPU asynchronously – i.e. the python code will

finish before the queued operations executed using CUDA or OpenCL

Load data

Create CDI object

Code optimisation:
• Minimise number of read+write of

arrays (algorithm)

• Check average throughput in

GB/s vs card specs

GPU VS CPU COST EFFICIENCY (AMAZON)

NOBUGS 2024 - Vincent Favre-Nicolin | 25/09/2024

GPU (V100),

CUDA

Xeon E5-2686

4 cores, FFTW

2D FFT (16x1024x1024) 0.81 ms 38 ms

3D FFT (128**3) 0.16 ms 4 ms

3D FFT (256**3) 1.04 ms 60 ms

3D FFT (512**3) 12.1 ms 550 ms

Amazon price/hour 3 € 0.4 €

Cost per 10**6 2D FFT 0.04 € 0.26 €

Cost per 10**6 3D FFT 10 € 61 €

• GPU are ~50x faster compared to CPU (4 cores), for float32

• Price per FFT is ~1 order of magnitude cheaper per FFT

• GPU memory max 32 48 80 Gb

NB: timing does not include data transfer to GPU (implies long on-GPU computing)

x6

x46

x7

Notes: Xeon E5-2686 test on the Amazon V100 machine (4 core=8 vCPUs). 256 and 512 3D FFTs are 10-20% faster on ESRF scisoft14 (Xeon Gold 6134). FFTW with FFTW_MEASURE

x7

x47

2020

GPU VS CPU COST EFFICIENCY (AMAZON)

NOBUGS 2024 - Vincent Favre-Nicolin | 25/09/2024

GPU (V100),

CUDA

4 cores, FFTW

2D FFT (16x1024x1024) 0.81 ms 38 ms

3D FFT (128**3) 0.16 ms 4 ms

3D FFT (256**3) 1.04 ms 60 ms

3D FFT (512**3) 12.1 ms 550 ms

Amazon price/hour 4 € 0.24 €

Cost per 10**6 2D FFT 0.056 € 0.16 €

Cost per 10**6 3D FFT 13 € 36 €

• GPU vs CPU costs are increasing

• Still favourable: parallel processing more efficient, hardware

acceleration of transcendental functions etc…

• But borderline for non-iterative transforms…

NB: timing does not include data transfer (implies long on-GPU computing)

x3

x46

x16

x3

x47

2024

PYTHON: ASYNCHRONOUS GPU EXECUTION

NOBUGS 2024 - Vincent Favre-Nicolin | 25/09/2024

FT

Launch of all GPU kernels

For the next 20 RAAR cycles

FT-1

1 RAAR Cycle (20ms)

Amplitude

projection

Support

projection

Copy 3D

array

All operations are queued from Python, then executed asynchronously.

No Python<->GPU latency, both in CUDA and OpenCL

… except when reading back data from GPU (LLK, graphical display,..)

Typical performance for CDI/Ptycho: average 600 Gbytes/s on a V100

cdi = RAAR()**20 * cdi

(512**3 dataset, Titan V)

• Minimise the number of

read+write needed (algorithm)
• Check the nominal average

speed in GB/s

COHERENT IMAGING APPLICATIONS

NOBUGS 2024 - Vincent Favre-Nicolin | 25/09/2024

CDI- unsupervised

Reconstruction (MaxIV)
J Synchrotron Rad 26 (2019), 18300

Ptychography Multi-GPU Ptychography

(MPI, asynchronous)

Spectro-Ptychography

(Hermès@Soleil)
Commun Mater 3, 8 (2022)

5 µm

Materials Characterization 187 (2022) 111834

Near-field ptycho-

tomography

(ID16A)
1200 projections

Processing: 1’/projection
(faster for weak phase objects)

LIVE HOLO-TOMOGRAPHY (ID16B)

NOBUGS 2024 - Vincent Favre-Nicolin | 25/09/2024

• data 2048x2048, 2500 frames

• ID16B: 1 tomogram every 3-

7s for two hours

• Binned x3 for ‘live’

reconstruction

• Iterative phasing (10 cycles)

+ filtered back-projection

(Nabu)

• 1 volume (~7003) every 1.8 s

(32 cores + 1 L40s GPU)

• multiprocessing + shared

memory

• Simple web/python interface

using ipywidgets + voilà (1

day of development)

• Remote interface to a

compute node

• Good for prototyping user

interfaces (or more..)

CDI + MACHINE LEARNING: GAP INPAINTING

M. Masto's PhD, J. Appl. Cryst 57 (2024), 966 https://arxiv.org/abs/2403.08596

Pixel detectors are

great for coherent

diffraction imaging…

but gaps create lots of

artefacts

Using deep learning it is possible to learn the shape

of CDI oscillations and estimate the masked data

Learning using small patches (e.g. 32 pixels wide)

instead of the whole data should allow the transfer of
the neural network to a larger number of datasets

NOBUGS 2024 - Vincent Favre-Nicolin | 25/09/2024

https://arxiv.org/abs/2403.08596

GET PYNX

PyNX 2024.1

Open-source, available from

https://gitlab.esrf.fr/favre/PyNX

Doc from https://pynx.esrf.fr

PyNX is developed at ESRF, but is also used at Soleil, Petra-III, Sirius, NSRRC/TPS…

Scripts for other instruments (data format) can be easily added for Ptycho & CDI.

26/09/2024

l Coherent Imaging with PyNX l Vincent Favre-NicolinPage 17

https://gitlab.esrf.fr/favre/PyNX
https://pynx.esrf.fr/

CONCLUSION & ACKNOWLEDGEMENTS

NOBUGS 2024 - Vincent Favre-Nicolin | 25/09/2024

Acknowledgements:

• ID01, ID10, ID13, ID16A&B for data, tests & discussions – S. Leake, Y. Chushkin, M. Burghammer, J. da
Silva, P. Cloetens, A. Johannes, L. Bloch, T. Gruenewald, J. Carnis, M.-I. Richard, T. Schulli, C. Richter,

T. Zhou, E. Zatterin, G. Girard, C Atlan, J. Villanova, P. Gravier, O. Stamati, D. Karpov, C. Atlan…

• P. Paleo, N. Vigano, J. Kieffer, A. Mirone, T. Vincent, H Payno…

• Soleil: D. Simonne, N. Mille, F. Picca, K. Medjoubi, J.Vijayakumar

• CEA: M.-I. Richard, C. Chatelier, Ni Li, E. Bellec, J. Eymery..

• D. Tolmachev for the VkFFT library (check pyvkfft – https://pyvkfft.readthedocs.io/)

• All the PyNX users for feedback and interesting data

• GPUs remain highly efficient for iterative algorithms used for coherent imaging, and

other highly parallel algorithms

• But get more expensive/specialised for Deep Learning (half precision operations)…

• Expected growth in data & processing needs at ESRF: x4 in the next 5 years

• Need to watch how the CPU/GPU price/performance evolves (ARM ? DPU ? FPGA ?..)

• What about ML for coherent imaging ? Fast results, but not yet accurate enough ?

https://pyvkfft.readthedocs.io/

	Slide 1
	Slide 4: Coherent X-ray Imaging @ESRF
	Slide 5: Coherent X-ray Imaging: algorithms ?
	Slide 6: Coherent diffraction imaging: the phase problem
	Slide 7: COHERENT IMAGING: operators & GPU-friendly data
	Slide 8: COHERENT IMAGING: operators
	Slide 9: PYNX CDI operators (python API)
	Slide 10: GPU vs CPU cost efficiency (Amazon)
	Slide 11: GPU vs CPU cost efficiency (Amazon)
	Slide 12: PYTHON: ASYNCHRONOUS GPU EXECUTION
	Slide 13: Coherent imaging applications
	Slide 14: Live holo-tomography (ID16B)
	Slide 15: CDI + machine learning: gap inpainting
	Slide 17: Get PynX
	Slide 18: Conclusion & acknowledgements

