
Web-Based control system for the QUATI beamline at Sirius
Igor Ferreira Torquato¹, Santiago Figueroa¹, Alexey Espíndola¹, Eduardo Coelho¹, Amélie Rochet¹
¹ Brazilian Synchrotron Light Laboratory (LNLS), Brazilian Center for Research in Energy and Materials (CNPEM)

RabbitMQ MongoDB Flask Bootstrap

Main technologies used

On the Quati beamline¹, which is the X-ray Absorption
Spectroscopy (XAS) beamline of Sirius², the experiment
control system is designed to offer a simple yet robust web-
based interface to scripts and scan engines. The system
architecture is composed of a centralized control server
designed to serve multiple clients. The chosen architecture
enables the use of asynchronous communication with the
client, client-server decoupling, and non-simultaneous
availability, offering greater flexibility and fault tolerance.

The main technologies used in the system include RabbitMQ³ for
decoupling the GUI application from the executors (consumers),
MongoDB for storing metadata related to scripts and runs, Flask4 as
the web framework and Bootstrap + JS as the font-end framework.

Introduction

System architecture

Web

Use Cases

Consumers

The system architecture is designed with an application that
is decoupled from the control system and scan engines. It
maintains its own databases to store useful information for
the beamline user, independent of the control system’s
requirements. The outermost layers of the application,
along with interfaces, handle translating actions between
the Graphical User Interface (GUI) and the app and vice-
versa, isolating the core use cases from possible variations
in the system requirements.
By reversing the dependencies and decoupling the
applications using a Message Queue, the use
cases are isolated not only from the engines,
but also gain a level of independence from
the infrastructure, enabling a fully
testable system, from unit to
integration tests.

Multiple Queues can be created
to meet user requirements, with
each queue linked to one or more
consumers.
An abstract class for consumers is
implemented, allowing for the
integration with specific control
systems.

• Integrated with internal login;
• Checks for user proposals;
• Has user roles and admin features;
• Uses SSL for secure connection;
• Enables remote access;
• GUI can be Web or Desktop;
• Uses WebSockets for real-time

updates.

Containerized application with Docker
Compose

Automations for speedup user’s productivity

Decouple system with Message Queue

Use Cases

Interfaces/Adapters

GUI

Use cases were employed to design the
entire system. They consider that
common metadata, such as proposal
number and facility information are
“transparent” to the user. Therefore,
the user/scientist focus will be only on
the measurement at the beamline.

Conclusions and perspective

Login

Automatic
proposal
update

Check user
permissions

Login with
email

Automatic
group check

Storage

LDAP API

Automatic
admin set

The QControl is currently under development
and is implemented on the Quati beamline (under
commissioning). It has enabled the staff and support
teams to synchronize their activities to test beamline devices and
has also been used for controlling/monitoring vacuum evolution
during beamline commissioning. The next steps for the project
include:

• Develop a consumer for Bluesky, with a Run Engine
or consulting HTTP server;

• Complete the implementation of use cases;
• Documentation and License;
• Possibly evaluating a REST API and component view

of the system.

References
1.Figueroa, Santiago JA, et al. “QUATI beamline: QUick x-ray Absorption spectroscopy for TIme and
space-resolved experiments at the Brazilian Synchrotron Light Laboratory.” Radiation Physics and
Chemistry 212 (2023): 111198
2. Liu, Lin, et al. "The sirius project." Journal of synchrotron radiation 21.5 (2014): 904-911.
3. RabbitMQ Documentation | RabbitMQ. (n.d.). https://www.rabbitmq.com/docs
4. Flask Documentation. https://flask.palletsprojects.com/en/3.0.x/

	Slide 1

