Digital Twin Design and Implementation at the Institut Laue-Langevin

Shervin Nourbakhsh (Institut Laue-Langevin)

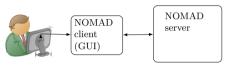
NOBUGS 2024

Objectives

Enrich the offer of user tools with the possibility to run a virtual experiment.

Training:

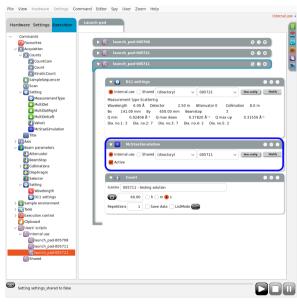
- newcomers to the instrument control system
- ▶ users new to a particular instrument, its configuration and capabilities
- **Settings optimization:** study and optimize instrument settings for a specific configuration to maximize some figure of merit (e.g. intensity vs resolution)
- **Analysis:** improve analysis with better understanding of some background sources and uncertainties (e.g. effect of a possible mis-alignment)
- **Support material:** enrich proposals for demanding beam time with results from simulated data with the specific instrument taking into account its capabilities

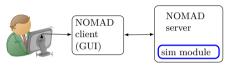

Design Requirements

- ▶ usable by users with **basic knowledge** in neutron ray-tracing and interaction simulation
- ▶ use the **familiar interface** of instrument control to configure and start acquisition
- \blacktriangleright simulated data must be treated as the real data \rightarrow written to disk in same format
- ▶ use state-of-the-art simulation software (e.g. McStas for neutron ray-tracing)

Instrument Control GUI

- NOMAD is ILL's Instrument Control System
- ► The GUI is a java client connecting to the server
- \blacktriangleright NOMAD core is a c++ server
- ▶ from the GUI users can:
 - ▶ control the instrument settings
 - \blacktriangleright program the acquisition workflow




Shervin Nourbakhsh

25/09/2024

THE EUROPEAN NEUTRON SOURCE FOR SOCIETY

Instrument Control GUI

- NOMAD is ILL's Instrument Control System
- ► The GUI is a java client connecting to the server
- \blacktriangleright NOMAD core is a c++ server
- ▶ from the GUI users can:
 - control the instrument settings
 - program the acquisition workflow

Shervin Nourbakhsh

25/09/2024

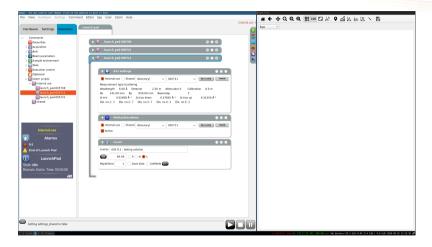
THE EUROPEAN NEUTRON SOURCE FOR SOCIETY

Specific module for simulation settings

File View Hardware Settings Command Editor Spy User Zoom Help

							internal us
Hardware Settings Execution		imulation 005711					
 Instruments 	McStas5	simulation 005711					
~ 🔜 Acquisition	_						
> 🔂 Counts	Active			Main directory			
SampleSequencer	Simulation ID d11				Interna	use	Shared
> 😰 Scans	Sample		Sample holder				
Setting	Chemical formula	NONE	Material	Quartz 🗸	Sub directory	(directory)	V New
MeasurementType				40000	Load file	005711	~
C monitor1	Material	q5q ~	Shape	Box 🗸			
C monitor2	Shape	Holder 🗸	Thickness(m)	0.0013		Save)	Save as
MultiDet	anape	Houser		0.0013			
MultiDetRight			X (m)	0.0200			
MultiDetLeft			Y (m)	0.0300			
W1740_1			W 4 - 1				
€ V1740_2			Z (m)	0.0135			
₩ V1740_3	Sample files						
€ V1740_5			_				
8 V1740_6	qSq File simu	_5711.sq Upl	paded Uploa	d a file			
E V1740_7	Simulation						
1740_B	Simulation						
Pickup_1							
E DMS	Clear cache						
Valve1							
McStasSimulation							
🕕 Title							
> 🛐 Axis							
> 🚺 Beam parameters							
> 💽 Sample environment							
> 🔀 Tools							

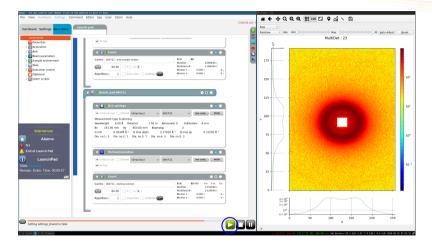
Sample settings


- ▶ shape and size
- material or information about scattering probability from theoretical calculations

Sample holder

- ▶ shape and size
- ▶ material

Virtual acquisition



• User can start a simulation as used to do with the experiment.

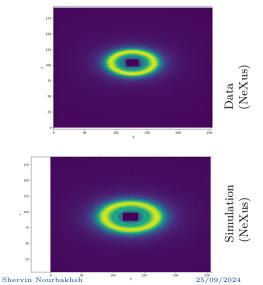
Shervin Nourbakhsh

Virtual acquisition

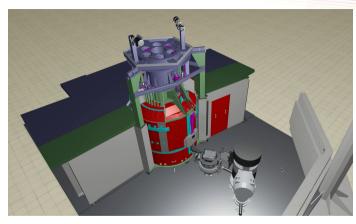
- User can start a simulation as used to do with the experiment.
- Feedback on progress

Shervin Nourbakhsh

Virtual acquisition

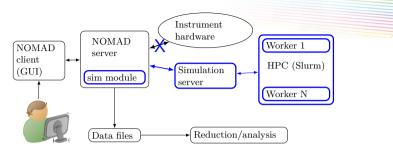


- User can start a simulation as used to do with the experiment.
- Feedback on progress
- Results updated at time intervals


Simulation result

Scattering on calibration sample with sample holder (D11)

3D view Y. Le Goc et al.



Better understanding of the instrument, its current configuration and possible movements.

- ▶ Live 3D view of current configuration.
- ▶ Animated showing moving parts at change of configuration.

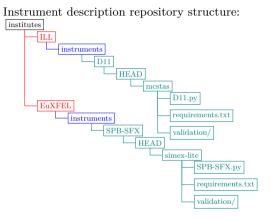
Overview

- C++ client API: sends simulation requests with instrument and sample parameters and receives results
- **SIM server:** receives requests, dispatches workers, packs and returns results
- Workers on HPC (Slurm) running the instrument simulation executables (e.g. McStas)
- **3D server:** receives instrument parameters, generates 3D view in HMTL5 page

Shervin Nourbakhsh

CAMEO middleware (see Le Goc's poster) provides:

- ► APP management (start/stop) also on remote machines
- Communication between managed APPs



Simulation Executable

- ▶ Workers can run any program to perform the simulation
- McStas used as state-of-the-art neutron ray-tracing software
- Instrument description
 - in Python using McStasScript^a and libpyvinyl library^b
 - retrieved from PANOSC Vinyl public "instrument description repository" (Github)
 - ▶ usable also in Jupyter notebook
- Instrument executables compiled for CPU and GPU and binary packages created and installed on HPC nodes.

 a Mads Bartelsen

 $^b \mathrm{Carsten}$ Fortmann-Grote, Mads Bertelsen, Juncheng E. Shervin Nourbakhsh

Summary

Objectives achieved:

- \blacktriangleright A prototype setup for a digital twin (DT) at ILL has been developed
- ▶ The DT can be used by users with no knowledge about simulation
- ▶ Data are available in the usual format, ready for reduction and analysis via the normal workflow.
- ▶ The client-server model allows further development of different interfaces to the simulation server (e.g. Jupyter notebooks via python API, or other client program)
- ▶ The parallelization on HCP (Slurm) has been implemented.
- ▶ Workers are flexible to allow different simulation softwares.
- ▶ McStas simulation binaries running on both CPUs and GPUs.
- ▶ 3D live view of the instrument in current configuration and showing movements at configuration change available as a web application.

Further steps:

- ▶ Add non-simulated background from real data.
- ▶ Develop surrogate models (ML) for faster simulations.

