
Karabo goes AMQP:
Replacement of the Core Communication Broker

Dr. Gero Flucke

for the Controls group @ European XFEL GmbH

September 25th, 2024

2Karabo goes AMQP: Replacement of the Core Communication Broker Gero Flucke, European XFEL, 13th NOBUGS, September 25th, 2024

Outline

Karabo Communication Basics

Struggles with the original

JMS broker implementation

Refactoring Strategy

Timeline

Refactoring

Deployment

Issues on the way

Summary

Karabo:

Supervisory Control and Data Acquisition

at the beamlines and instruments of the

European XFEL (Hamburg Metropolitan Area)

3Karabo goes AMQP: Replacement of the Core Communication Broker Gero Flucke, European XFEL, 13th NOBUGS, September 25th, 2024

Karabo: Device Based Communication via a Message Broker

Self-describing

Karabo Devices

Equipment control,

e.g. motors, valves,…

Detectors

e.g. cameras

Online data analysis

Data Logging

Other system services

GUI entry point

DAQ for big/scientific

data (not shown)

Message

Broker

Equipment

Control

e.g. motor, pump,
valve, sensor

DAQ

Equipment

e.g. commercial camera

GUI Server

and other service devices
like configuration manager

Analysis

Node

e.g. calibration,
image processing

Data Logging

Node

storage of control data
and configurations

Command Line

Interface

Graphical

User Interface

TCP/IP data

pipelines for

big/fast data

4Karabo goes AMQP: Replacement of the Core Communication Broker Gero Flucke, European XFEL, 13th NOBUGS, September 25th, 2024

Karabo Communication Patterns

1-to-1: Request and reply

Device registers methods as “slots”.

Request from remote with up to four arguments

►Reply if done with up to four values.

►Requester can suppress reply (fire-and-forget)

1-to-all: Broadcast (for system purpose only)

Always fire-and-forget

Still costly, so used rarely:

►System topology: instance new and gone

►Problematic device states (UNKNOWN, ERROR)

Device2Device1

Request

slot

Notify

Notify

Reply

Device1

Device2

Device3

Device4

Call

slot

Notify

Notify

DeviceN

5Karabo goes AMQP: Replacement of the Core Communication Broker Gero Flucke, European XFEL, 13th NOBUGS, September 25th, 2024

Karabo Communication Patterns (ctd.)

Publish/subscribe

Devices (2 & 5) subscribe slots to a remote “signal”.

When signal is “emitted”,

all subscribed slots are called.

►No publishing overhead for “popular” devices

►Karabo framework is completely event-driven:

regular polling obsolete.

Device1

Device2

Device3

Device4

Emit

signal

Device5

6Karabo goes AMQP: Replacement of the Core Communication Broker Gero Flucke, European XFEL, 13th NOBUGS, September 25th, 2024

Karabo APIs

C++:

“First language” of Karabo

High performance framework devices (GUI server, data logging)

and digitizers, some cameras

Python “Bound”:

Python bindings on top of C++ (now using pybind11)

►Communication completely covered by C++

Many similarities with C++  not very Pythonic

Python “Middlelayer” (MDL):

Pure Python (early use of asyncio library, single thread)

Nowadays most popular API, not only for middlelayer devices

Karabo installation size e.g. about:

• 2700 devices

• 400 k properties

• 1.2 kHz message rate to broker

• 4.3 kHz message rate from broker

(13 such installations at EuXFEL)

7Karabo goes AMQP: Replacement of the Core Communication Broker Gero Flucke, European XFEL, 13th NOBUGS, September 25th, 2024

Original Karabo Broker Implementation

Broker: Java Messaging System (JMS) – OpenMQ

Client library: OpenMQc

C/C++ library also directly called from pure Python API (MDL)

Each device subscribes once to a Karabo “topic”

(e.g. for one of the EuXFEL instruments)

Broker filters messages according to target device ids in message header

►message header carries target information

► signal subscription not on the broker, but on Karabo device emitting the signal

Device1

Device2

Device3

Device4

Emit

signal

Device5

8Karabo goes AMQP: Replacement of the Core Communication Broker Gero Flucke, European XFEL, 13th NOBUGS, September 25th, 2024

Problems with JMS Broker and OpenMQc Library

Global message backlog

Messages not consumed kept on broker

► If max. reached, broker refuses messages:

No communication anymore!

Causes:

►Badly behaving processes

►Many receivers in one process

Message drop

Hacked into the code as last rescue

Triggered memory leak in OpenMQc

OpenMQc library not maintained

Memory leak problem fixed only four years

after we reported in 2015

4 Hz 10 Hz
1 Hz

Rates: all 370 receivers

Problems worked around over years:

Except backlog from badly behaving processes

►Closely monitoring backlog

►On-call staff hunting process to kill

►Failed very few times per year

(potential loss of few hours of beamtime)

9Karabo goes AMQP: Replacement of the Core Communication Broker Gero Flucke, European XFEL, 13th NOBUGS, September 25th, 2024

Refactoring Strategy I

Broker communication is critical:

 Need to be able to switch back to old broker at any time

Allow switching back and forth by just changing the environment variable $KARABO_BROKER

Introduce abstract base class for broker communication (both APIs: C++ and MDL)

Concrete class for each broker protocol supported

Dynamically choose concrete class according to protocol part of broker address

► tcp://somehost:7777 - tcp  JmsBroker

► amqp://anotherhost:5672 – amqp  AmqpBroker

►…

Long timeline of project:

No long lived feature branch in git (fear of divergence)

But merge smaller changes

► always keeping JMS communication intact

10Karabo goes AMQP: Replacement of the Core Communication Broker Gero Flucke, European XFEL, 13th NOBUGS, September 25th, 2024

Refactoring Strategy II

Tests, tests, tests!

Continuous integration

►Unit test of communication class SignalSlotable runs for all supported brokers

► Integration tests are repeated for JMS and most promising new broker

Big test suit of our TestPortal for each release candidate and intermediate alpha releases

► Includes tests beyond Karabo framework (device packages)

► Integrated new stress tests

• high data rate

• message order

11Karabo goes AMQP: Replacement of the Core Communication Broker Gero Flucke, European XFEL, 13th NOBUGS, September 25th, 2024

Timeline of Refactoring

Autumn 2015: Worrying rate tests with message loss (data logging)

Nov. 2016: Karabo 2 released

To commission the facility

Sept. 2017: First EuXFEL instruments go into production

2018: First serious studies of alternative brokers

Mainly studies concerning MQTT protocol

April 2020: Official start of internal project to investigate broker protocols

MQTT: Liked for IoT applications

AMQP: Wall Street proven

Nov. 2020: Broker base class released in all APIs

12Karabo goes AMQP: Replacement of the Core Communication Broker Gero Flucke, European XFEL, 13th NOBUGS, September 25th, 2024

Timeline of Refactoring (ctd.)

May 2021: Experimental MQTT broker support

Caveat: MQTT does not keep messages in order if sent from A to B via different routes

Karabo operation requires order, but signals and direct slots cannot use the same route

► complicated and fragile custom code needed to keep order

Oct. 2021: Experimental AMQP and Redis broker support

Message order integration test on CI

2022: Work on

Robustness

“Fail-over” for cases of lost broker connection

13Karabo goes AMQP: Replacement of the Core Communication Broker Gero Flucke, European XFEL, 13th NOBUGS, September 25th, 2024

Timeline of Deployment

March 2023: Deploy use of AMQP at first instrument SXP

RabbitMQ broker provides ready-to-use monitoring

Smooth start:

► Just like a normal Karabo deployment!

July 2023: Instrument with biggest control installation follows

Oct. 2023: Fix of a race condition in Karabo’s AMQP code

Lead occasionally to crashes

Dec. 2023: Deploy AMQP facility wide (JMS @ EuXFEL is history!)

SXP, CTRL and DAQ staff

March 2023

14Karabo goes AMQP: Replacement of the Core Communication Broker Gero Flucke, European XFEL, 13th NOBUGS, September 25th, 2024

Issues and Actions after Full AMQP Deployment

Jan. and April 2024: Crash of one RabbitMQ broker process (not Karabo)

Fixed with hardware replacement and RabbitMQ upgrade

“Fail-over” did not work

Spurious missing broker subscriptions

If many subscriptions are run concurrently (e.g. if a data logger starts)

Repeated crashes when many devices in a single process start concurrently

 Spring 2024: Decision to rewrite the Karabo C++ interface to AMQP from scratch

Incl. unit tests with concurrency situations

Released June 2024

►Deployed for Karabo “backbone” and DAQ in July 2024

► “Fail-over” postponed to November release

15Karabo goes AMQP: Replacement of the Core Communication Broker Gero Flucke, European XFEL, 13th NOBUGS, September 25th, 2024

Issues and Actions after Full AMQP Deployment (ctd.)

Apr./Sept. 2024: AMQP Broker monitoring shows message queues for devices

Identified as a CPU problem

►Overloaded host or Python (MDL) process

No danger for communication in full installation (as the backlog of the JMS broker was)

►Each message queue on the broker has a limit

►Problem stays local

16Karabo goes AMQP: Replacement of the Core Communication Broker Gero Flucke, European XFEL, 13th NOBUGS, September 25th, 2024

Performance Reached

C++

Single device on a server

►Withstands receiving small messages: 20 kHz

►Can send small messages at 17 kHz

Server withstands simultaneous high sending and receiving rates

►Single receiver device 9.0-9.5 kHz

► 20 kHz sending rate (latencies < 100 ms)

• 200 senders at 100 Hz each

• 1000 senders at 20 Hz

Note: Much contingency

►Even GUI servers and data loggers receive less than 1 kHz

MDL (i.e. single threaded Python)

Can send and receive in total ≥ 2 kHz

Side effect: now pure Python broker client library

 simplifies distribution

17Karabo goes AMQP: Replacement of the Core Communication Broker Gero Flucke, European XFEL, 13th NOBUGS, September 25th, 2024

Summary

Karabo control system communicates via a message broker

Some deficiencies of the originally used JMS broker and OpenMQc client library spotted early

Replacing core technology in a used system is delicate

Always need to be able to switch back

Requires confidence in test coverage

About five years from first serious studies to full AMQP deployment

►There are always short term goals that prevent more rapid progress

►Some things need to be iterated

The effort was worth it:

No global danger for communication in a Karabo installation (less emergency call)

Higher performance

RabbitMQ broker ready for encryption

