BD meeting 06/06/2023

In the view of the SI SLS tests we should expect 50\% injeff with the absorber at 4 mm . Any 0.5 mm additional restriction will make the machine difficult to operate.

- No TBT available, we where completely blind on injected trajectory.
- With slow kickers the experiment cannot be done with stored beam.
- The observable is the current intesity injected in 1 shot considering the booster current is constant.
- Simulations still to be done.

- Collimators closed at 4mm.

Cycling

Single corrector of first cell can correct the orbit down to $75 \mu \mathrm{~m}$
4 rms. (all horizontal)

Maybe the operation file is corrupted or not compatible with changes mad on the PS.

Simulation of IE with a single kicker installed in the first SF following injection point.

Kicker deflection=0.45mrad.
No RF and no radiation.
150 particles in both injected and stored beam. Tracking for 500 turns.

Machine with errors (not quantified).

- 100% injeff reached. Injected beam is injected at $\Delta X=12 \mathrm{~mm}$ compatible with a septum blade at 7 mm from the injected beam.
- The kick can be shared between two kickers, the second one being in any SF. The strength of each kicker is then 0.225 mrad
- Inserting a fast strip line in the vacuum chamber of the sextupoles will not be easy.

Seems very promising if we find a solution to insert a SI kicker in the sf vacuum chamber.

The kicker strength required is relatively small. It can be obtained by a 0.5 m Kicker with 10 mm spacing between the blades, and a 30KV pulser.

The advantage of such scheme is that you can combine it with any other scheme to enhance performance.

Can we gain space between SF and the neerby QF??

